Peaks, Descents, and Pattern Avoidance

Yan Zhuang

Department of Mathematics Brandeis University

June 30, 2017 15th International Conference on Permutation Patterns Reykjavík University

Outline

2 The Modified Foata–Strehl Action

3 MFS-Invariant Pattern Classes

Peaks, Descents, and Pattern Avoidance

- A permutation of length n (or, n-permutation) π = π₁π₂···π_n is a linear ordering of [n] = {1, 2, ..., n}.
- The set of *n*-permutations is denoted \mathfrak{S}_n .

- A permutation of length n (or, n-permutation) π = π₁π₂···π_n is a linear ordering of [n] = {1, 2, ..., n}.
- The set of *n*-permutations is denoted \mathfrak{S}_n .
- We say that π_i is a descent of $\pi \in \mathfrak{S}_n$ if $\pi_i > \pi_{i+1}$.
- The descent number des (π) is the number of descents of π .

- A permutation of length n (or, n-permutation) π = π₁π₂···π_n is a linear ordering of [n] = {1, 2, ..., n}.
- The set of *n*-permutations is denoted \mathfrak{S}_n .
- We say that π_i is a descent of $\pi \in \mathfrak{S}_n$ if $\pi_i > \pi_{i+1}$.
- The descent number des (π) is the number of descents of π .
- We say that π_i is a peak of $\pi \in \mathfrak{S}_n$ if $\pi_{i-1} < \pi_i > \pi_{i+1}$.
- The peak number $pk(\pi)$ is the number of peaks of π .

- A permutation of length n (or, n-permutation) π = π₁π₂···π_n is a linear ordering of [n] = {1, 2, ..., n}.
- The set of *n*-permutations is denoted \mathfrak{S}_n .
- We say that π_i is a descent of $\pi \in \mathfrak{S}_n$ if $\pi_i > \pi_{i+1}$.
- The descent number des (π) is the number of descents of π .
- We say that π_i is a peak of $\pi \in \mathfrak{S}_n$ if $\pi_{i-1} < \pi_i > \pi_{i+1}$.
- The peak number $pk(\pi)$ is the number of peaks of π .

Example

Let $\pi = 6317254$. The descents of π are 6, 3, 7, and 5, and the peaks of π are 7 and 5, so des $(\pi) = 4$ and pk $(\pi) = 2$.

Eulerian Polynomials and Peak Polynomials

• The *n*th Eulerian polynomial $A_n(t)$ is defined by

$$A_n(t) \coloneqq \sum_{\pi \in \mathfrak{S}_n} t^{\operatorname{des}(\pi)}.$$

Eulerian Polynomials and Peak Polynomials

• The *n*th Eulerian polynomial $A_n(t)$ is defined by

$$A_n(t) \coloneqq \sum_{\pi \in \mathfrak{S}_n} t^{\operatorname{des}(\pi)}.$$

• The *n*th peak polynomial $P_n(t)$ is defined by

$$P_n(t) \coloneqq \sum_{\pi \in \mathfrak{S}_n} t^{\mathsf{pk}(\pi)}.$$

Eulerian Polynomials and Peak Polynomials

• The *n*th Eulerian polynomial $A_n(t)$ is defined by

$$A_n(t) \coloneqq \sum_{\pi \in \mathfrak{S}_n} t^{\operatorname{des}(\pi)}.$$

• The *n*th peak polynomial $P_n(t)$ is defined by

$$P_n(t) \coloneqq \sum_{\pi \in \mathfrak{S}_n} t^{\mathsf{pk}(\pi)}.$$

Example

Permutations of length 3:

Thus, $A_3(t) = 1 + 4t + t^2$ and $P_3(t) = 4 + 2t$.

γ -Positivity

• A polynomial f(t) of degree n is called γ -positive if it can be written as a linear combination of $\{t^j(1+t)^{n-2j}\}_{0 \le j \le n/2}$ with non-negative coefficients.

γ -Positivity

• A polynomial f(t) of degree n is called γ -positive if it can be written as a linear combination of $\{t^j(1+t)^{n-2j}\}_{0 \le j \le n/2}$ with non-negative coefficients.

Fact

If f(t) is γ -positive, then the sequence of its coefficients is unimodal and palindromic.

γ -Positivity

 A polynomial f(t) of degree n is called γ-positive if it can be written as a linear combination of {t^j(1 + t)^{n-2j}}_{0≤j≤n/2} with non-negative coefficients.

Fact

If f(t) is γ -positive, then the sequence of its coefficients is unimodal and palindromic.

Theorem (Foata and Schützenberger 1970)

The Eulerian polynomials $A_n(t)$ are γ -positive.

Stembridge's Magical Formula

Theorem (Stembridge 1997)

$$A_n(t) = \left(\frac{1+t}{2}\right)^{n-1} P_n\left(\frac{4t}{(1+t)^2}\right)$$

• Equivalently,

$$P_n(t) = \left(\frac{2}{1+v}\right)^{n-1} A_n(v)$$

where $v = \frac{2}{t}(1 - \sqrt{1 - t}) - 1$.

Brändén's Generalization

• For
$$\Pi \subseteq \mathfrak{S}_n$$
, let

$$A(\Pi; t) \coloneqq \sum_{\pi \in \Pi} t^{\mathsf{des}(\pi)} \quad \text{and} \quad P(\Pi; t) \coloneqq \sum_{\pi \in \Pi} t^{\mathsf{pk}(\pi)}.$$

Brändén's Generalization

• For $\Pi \subseteq \mathfrak{S}_n$, let

$$A(\Pi; t) \coloneqq \sum_{\pi \in \Pi} t^{\mathsf{des}(\pi)} \quad \text{and} \quad P(\Pi; t) \coloneqq \sum_{\pi \in \Pi} t^{\mathsf{pk}(\pi)}.$$

 The previous results are for Π = 𝔅_n, but Brändén showed that they hold for any Π ⊆ 𝔅_n invariant under the "modified Foata–Strehl action".

Brändén's Generalization

• For $\Pi \subseteq \mathfrak{S}_n$, let

$$A(\Pi; t) \coloneqq \sum_{\pi \in \Pi} t^{\mathsf{des}(\pi)} \quad \text{and} \quad P(\Pi; t) \coloneqq \sum_{\pi \in \Pi} t^{\mathsf{pk}(\pi)}.$$

- The previous results are for Π = 𝔅_n, but Brändén showed that they hold for any Π ⊆ 𝔅_n invariant under the "modified Foata-Strehl action".
- We define the modified Foata-Strehl action, state Brändén's results, and generalize them further.

2 The Modified Foata-Strehl Action

3 MFS-Invariant Pattern Classes

Peaks, Descents, and Pattern Avoidance

Peaks, Valleys, Double Ascents, and Double Descents

- Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.
- We say that π_i is a peak of π if $\pi_{i-1} < \pi_i > \pi_{i+1}$.
- We say that π_i is a valley of π if $\pi_{i-1} > \pi_i < \pi_{i+1}$.
- We say that π_i is a double ascent of π if $\pi_{i-1} < \pi_i < \pi_{i+1}$.
- We say that π_i is a double descent of π if $\pi_{i-1} > \pi_i > \pi_{i+1}$.

Peaks, Valleys, Double Ascents, and Double Descents

- Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.
- We say that π_i is a peak of π if $\pi_{i-1} < \pi_i > \pi_{i+1}$.
- We say that π_i is a valley of π if $\pi_{i-1} > \pi_i < \pi_{i+1}$.
- We say that π_i is a double ascent of π if $\pi_{i-1} < \pi_i < \pi_{i+1}$.
- We say that π_i is a double descent of π if $\pi_{i-1} > \pi_i > \pi_{i+1}$.
- We will work with peaks, valleys, double ascents, and double descents of the word $\check{\pi} := \infty \pi \infty$.

Example

(Color coding: peaks, valleys, double ascents, double descents.)

Let x ∈ [n] be a double ascent or double descent of *π*. Then let hop_x(π) be the permutation obtained from π by letting x "valley-hop".

Let x ∈ [n] be a double ascent or double descent of *π*. Then let hop_x(π) be the permutation obtained from π by letting x "valley-hop".

Let x ∈ [n] be a double ascent or double descent of π̃. Then let hop_x(π) be the permutation obtained from π by letting x "valley-hop".

• $hop_5(467512839) = 467125839$

Let x ∈ [n] be a double ascent or double descent of *π*. Then let hop_x(π) be the permutation obtained from π by letting x "valley-hop".

- $hop_5(467512839) = 467125839$
- $hop_9(467512839) = 946751283$

• Let $\pi \in \mathfrak{S}_n$ and let $x \in [n]$. Define φ_x by

 $\varphi_x(\pi) = \begin{cases} hop_x(\pi), & \text{if } x \text{ is a double ascent or double descent of } \check{\pi}, \\ \pi, & \text{if } x \text{ is a peak or valley of } \check{\pi}; \end{cases}$

these are involutions that commute with each other.

• Let $\pi \in \mathfrak{S}_n$ and let $x \in [n]$. Define φ_x by

 $\varphi_x(\pi) = \begin{cases} hop_x(\pi), & \text{if } x \text{ is a double ascent or double descent of } \check{\pi}, \\ \pi, & \text{if } x \text{ is a peak or valley of } \check{\pi}; \end{cases}$

these are involutions that commute with each other.

• Also, for $S \subseteq [n]$, define φ_S by

$$\varphi_{\mathcal{S}}(\pi) = \Big(\prod_{x\in \mathcal{S}} \varphi_x\Big)(\pi);$$

these are also involutions that commute with each other.

• Let $\pi \in \mathfrak{S}_n$ and let $x \in [n]$. Define φ_x by

 $\varphi_x(\pi) = \begin{cases} hop_x(\pi), & \text{if } x \text{ is a double ascent or double descent of } \check{\pi}, \\ \pi, & \text{if } x \text{ is a peak or valley of } \check{\pi}; \end{cases}$

these are involutions that commute with each other.

• Also, for $S \subseteq [n]$, define φ_S by

$$\varphi_{\mathcal{S}}(\pi) = \Big(\prod_{x\in\mathcal{S}}\varphi_x\Big)(\pi);$$

these are also involutions that commute with each other.

 The group Zⁿ₂ acts on G_n via the involutions φ_S; this action is called the modified Foata–Strehl action (or valley-hopping), abbreviated MFS-action.

Brändén's Theorem

Theorem (Brändén 2008)

Suppose that $\Pi \subseteq \mathfrak{S}_n$ is invariant under the MFS-action. Then the polynomial $A(\Pi; t)$ is γ -positive, and

$$A(\Pi; t) = \left(rac{1+t}{2}
ight)^{n-1} Pigg(\Pi; rac{4t}{(1+t)^2}igg).$$

Brändén's Theorem

Theorem (Brändén 2008)

Suppose that $\Pi \subseteq \mathfrak{S}_n$ is invariant under the MFS-action. Then the polynomial $A(\Pi; t)$ is γ -positive, and

$$A(\Pi;t) = \left(rac{1+t}{2}
ight)^{n-1} Pigg(\Pi;rac{4t}{(1+t)^2}igg).$$

Theorem (Brändén 2008)

The set of k-stack-sortable n-permutations is invariant under the MFS-action for any k.

• The set of 1-stack-sortable *n*-permutations is equal to $Av_n(231)$, whose descent polynomial is the *n*th Narayana polynomial.

A Refinement of Brändén's Theorem

• Given a set Π of permutations, let

$$P(\Pi; y, t) := \sum_{\pi \in \Pi} y^{\mathsf{pk}(\pi)} t^{\mathsf{des}(\pi)}.$$

Theorem (Z. 2017+)

Suppose that $\Pi \subseteq \mathfrak{S}_n$ for $n \ge 1$ is invariant under the MFS-action. Then

$$A(\Pi; t) = \left(\frac{1+yt}{1+y}\right)^{n-1} P\left(\Pi; \frac{(1+y)^2 t}{(y+t)(1+yt)}, \frac{y+t}{1+yt}\right).$$

Equivalently,

$$P(\Pi; y, t) = \left(\frac{1+u}{1+uv}\right)^{n-1} A(\Pi; v)$$

where
$$u = \frac{1+t^2-2yt-(1-t)\sqrt{(1+t)^2-4yt}}{2(1-y)t}$$
 and $v = \frac{(1+t)^2-2yt-(1+t)\sqrt{(1+t)^2-4yt}}{2yt}$.

Idea of Proof

• Fix $\sigma \in \Pi$. Then

$$\Big(\sum_{\pi\in \operatorname{Orb}(\sigma)}t^{\operatorname{des}(\pi)}\Big)(1+y)^{\operatorname{dasc}(\check{\sigma})+\operatorname{ddes}(\check{\sigma})}=\sum_{\pi\in \operatorname{Orb}(\sigma)}(1+yt)^{\operatorname{dasc}(\check{\pi})}(y+t)^{\operatorname{ddes}(\check{\pi})}t^{\operatorname{pk}(\check{\pi})};$$

both sides count permutations in $Orb(\sigma)$ with a marked subset of double ascents and double descents, where y is weighting the number of marked letters and t is weighting the descent number.

Idea of Proof

• Fix $\sigma \in \Pi$. Then

$$\Big(\sum_{\pi\in \operatorname{Orb}(\sigma)}t^{\operatorname{des}(\pi)}\Big)(1+y)^{\operatorname{dasc}(\check{\sigma})+\operatorname{ddes}(\check{\sigma})}=\sum_{\pi\in \operatorname{Orb}(\sigma)}(1+yt)^{\operatorname{dasc}(\check{\pi})}(y+t)^{\operatorname{ddes}(\check{\pi})}t^{\operatorname{pk}(\check{\pi})};$$

both sides count permutations in $Orb(\sigma)$ with a marked subset of double ascents and double descents, where y is weighting the number of marked letters and t is weighting the descent number.

We can express pk(*ň*), dasc(*ň*), and ddes(*ň*) in terms of pk(*π*) and des(*π*), which gives us

$$\sum_{\pi \in \operatorname{Orb}(\sigma)} t^{\operatorname{des}(\pi)} = \sum_{\pi \in \operatorname{Orb}(\sigma)} \frac{(1+yt)^{n-\operatorname{pk}(\pi)-\operatorname{des}(\pi)-1}(y+t)^{\operatorname{des}(\pi)-\operatorname{pk}(\pi)}t^{\operatorname{pk}(\pi)}}{(1+y)^{n-2\operatorname{pk}(\pi)-1}}$$

Idea of Proof

• Fix $\sigma \in \Pi$. Then

$$\Big(\sum_{\pi\in \operatorname{Orb}(\sigma)}t^{\operatorname{des}(\pi)}\Big)(1+y)^{\operatorname{dasc}(\check{\sigma})+\operatorname{ddes}(\check{\sigma})}=\sum_{\pi\in \operatorname{Orb}(\sigma)}(1+yt)^{\operatorname{dasc}(\check{\pi})}(y+t)^{\operatorname{ddes}(\check{\pi})}t^{\operatorname{pk}(\check{\pi})};$$

both sides count permutations in $Orb(\sigma)$ with a marked subset of double ascents and double descents, where y is weighting the number of marked letters and t is weighting the descent number.

We can express pk(*ň*), dasc(*ň*), and ddes(*ň*) in terms of pk(*π*) and des(*π*), which gives us

$$\sum_{\pi \in \operatorname{Orb}(\sigma)} t^{\operatorname{des}(\pi)} = \sum_{\pi \in \operatorname{Orb}(\sigma)} \frac{(1+yt)^{n-\operatorname{pk}(\pi)-\operatorname{des}(\pi)-1}(y+t)^{\operatorname{des}(\pi)-\operatorname{pk}(\pi)}t^{\operatorname{pk}(\pi)}}{(1+y)^{n-2\operatorname{pk}(\pi)-1}}$$

• Sum over all orbits contained in $\Pi.$

Similar Results

By taking Π = 𝔅_n, we get an analogous expression for the (pk, des) polynomials

$$P_n(y,t) \coloneqq \sum_{\pi \in \mathfrak{S}_n} y^{\mathsf{pk}(\pi)} t^{\mathsf{des}(\pi)}$$

in terms of the Eulerian polynomials $A_n(t)$, which can also be proved using noncommutative symmetric functions.

Similar Results

• By taking $\Pi = \mathfrak{S}_n$, we get an analogous expression for the (pk, des) polynomials

$$P_n(y,t) \coloneqq \sum_{\pi \in \mathfrak{S}_n} y^{\mathsf{pk}(\pi)} t^{\mathsf{des}(\pi)}$$

in terms of the Eulerian polynomials $A_n(t)$, which can also be proved using noncommutative symmetric functions.

• Similar results for other permutation statistics—as well as *q*-analogues and type B analogues—can be found in the following paper:

Yan Zhuang. Eulerian polynomials and descent statistics. *Adv. in Appl. Math.* 90: 86–144, 2017.

Outline

1 Introduction

2 The Modified Foata–Strehl Action

• Recall that Av_n(231) is invariant under the modified Foata–Strehl action.

• Recall that Av_n(231) is invariant under the modified Foata–Strehl action.

Theorem (Kim and Lin 2017+)

• Recall that Av_n(231) is invariant under the modified Foata–Strehl action.

Theorem (Kim and Lin 2017+)

 $Av_n(3142, 1342)$ is invariant under the MFS-action.

• **Question:** Can we characterize all pattern classes invariant under the modified Foata–Strehl action?

• Recall that Av_n(231) is invariant under the modified Foata–Strehl action.

Theorem (Kim and Lin 2017+)

- **Question:** Can we characterize all pattern classes invariant under the modified Foata–Strehl action?
- Or at least find more pattern classes that are MFS-invariant?

• Recall that Av_n(231) is invariant under the modified Foata–Strehl action.

Theorem (Kim and Lin 2017+)

- **Question:** Can we characterize all pattern classes invariant under the modified Foata–Strehl action?
- Or at least find more pattern classes that are MFS-invariant?
- This is an ongoing project that I am working on with my student Richard Zhou (Lexington High School).

• Recall that Av_n(231) is invariant under the modified Foata–Strehl action.

Theorem (Kim and Lin 2017+)

- **Question:** Can we characterize all pattern classes invariant under the modified Foata–Strehl action?
- Or at least find more pattern classes that are MFS-invariant?
- This is an ongoing project that I am working on with my student Richard Zhou (Lexington High School).
- For simplicity, we are only considering pattern sets Σ with patterns that are all of the same length.

Single-Orbit Pattern Sets

Fact

If $Av_n(\Sigma)$ is invariant under MFS for every $n \ge 1$, then Σ itself must be MFS-invariant.

Single-Orbit Pattern Sets

Fact

If $Av_n(\Sigma)$ is invariant under MFS for every $n \ge 1$, then Σ itself must be MFS-invariant.

Theorem (Zhou and Z. 2017+)

Let Σ be an orbit of the MFS-action. Then $Av_n(\Sigma)$ is MFS-invariant for every $n \ge 1$ if and only if Σ is one of the following:

{132}	{3412, 3421}
{231}	{12534, 12543, 21534, 21543}
1243, 2143}	{13524, 13542, 31524, 31542}
1342, 3142}	{14523, 14532, 41523, 41532}
2341, 3241}	{23514, 23541, 32514, 32541}
1423, 1432}	{24513, 24531, 42513, 42531}
2413, 2431}	{34512, 34521, 43512, 43521}

Pattern Sets Containing a Prescribed Pattern

Theorem (Zhou and Z. 2017+)

If $\sigma \in \mathfrak{S}_k$ has at least one peak, then there exists $\Sigma \subsetneq \mathfrak{S}_k$ containing σ such that $\operatorname{Av}_n(\Sigma)$ is MFS-invariant for every $n \ge 1$.

Pattern Sets Containing a Prescribed Pattern

Theorem (Zhou and Z. 2017+)

If $\sigma \in \mathfrak{S}_k$ has at least one peak, then there exists $\Sigma \subsetneq \mathfrak{S}_k$ containing σ such that $Av_n(\Sigma)$ is MFS-invariant for every $n \ge 1$.

- In fact, we have two constructions for obtaining Σ from σ :
 - $\textbf{ A construction that only works for patterns } \sigma \text{ with no double ascents and double descents.}$
 - **2** A general construction that works for all σ .

Pattern Sets Containing a Prescribed Pattern

Theorem (Zhou and Z. 2017+)

If $\sigma \in \mathfrak{S}_k$ has at least one peak, then there exists $\Sigma \subsetneq \mathfrak{S}_k$ containing σ such that $Av_n(\Sigma)$ is MFS-invariant for every $n \ge 1$.

- In fact, we have two constructions for obtaining Σ from σ :
 - **1** A construction that only works for patterns σ with no double ascents and double descents.
 - **2** A general construction that works for all σ .

Example

Let $\sigma =$ 13254. Then the first construction yields $\Sigma = \{13254, 14253, 15243\},$ whereas the second construction yields $\Sigma = \{13254, 12354, 21354, 23154, 31254, 32154\}.$

• Can we classify MFS-invariant pattern classes such that Σ is a union of 2 orbits? 3 orbits? Or give a more general classification?

- Can we classify MFS-invariant pattern classes such that Σ is a union of 2 orbits? 3 orbits? Or give a more general classification?
- Given a permutation σ , find an "optimal" construction of a pattern set Σ containing σ such that the corresponding pattern class is MFS-invariant.

- Can we classify MFS-invariant pattern classes such that Σ is a union of 2 orbits? 3 orbits? Or give a more general classification?
- Given a permutation σ , find an "optimal" construction of a pattern set Σ containing σ such that the corresponding pattern class is MFS-invariant.
- Extend to pattern sets containing patterns of different lengths. (Or can this be reduced down to the "homogeneous" case?)

- Can we classify MFS-invariant pattern classes such that Σ is a union of 2 orbits? 3 orbits? Or give a more general classification?
- Given a permutation σ , find an "optimal" construction of a pattern set Σ containing σ such that the corresponding pattern class is MFS-invariant.
- Extend to pattern sets containing patterns of different lengths. (Or can this be reduced down to the "homogeneous" case?)
- Consider other notions of pattern avoidance: barred patterns, consecutive patterns, vincular patterns, etc.

- Can we classify MFS-invariant pattern classes such that Σ is a union of 2 orbits? 3 orbits? Or give a more general classification?
- Given a permutation σ , find an "optimal" construction of a pattern set Σ containing σ such that the corresponding pattern class is MFS-invariant.
- Extend to pattern sets containing patterns of different lengths. (Or can this be reduced down to the "homogeneous" case?)
- Consider other notions of pattern avoidance: barred patterns, consecutive patterns, vincular patterns, etc.

THANK YOU!