Fast Algorithms for Permutation Pattern Detection

William Kuszmaul

Stanford University

Duluth REU Supervised by Joe Gallian

June 26, 2017

PATTERNS WITH NO ADJACENCY CONSTRAINTS

Permutation

CLASSIC RESEARCH PROBLEM

Pick small set of patterns Π .

The Question:

How many permutations of size n avoid all $\pi \in \Pi$?

Notation: Set of such permutations is called $AV_n(\Pi)$. For single patterns π , we say $AV_n(\pi)$ instead of $AV_n(\{\pi\})$.

Example:

$$\Pi = \{2413, 3142\}.$$
 $|AV_n(\{2413, 3142\})|$ is the *n*-th Schröder number.

MY RESEARCH: CAN WE TREAT PATTERN AVOIDANCE AS AN EXPERIMENTAL SCIENCE?

Example Experiment:

For each $\Pi \subseteq S_4$

- 1. Compute $|AV_1(\Pi)|, \ldots, |AV_{16}(\Pi)|$
- 2. Search for sequence in OEIS

My Research: Can we build fast and practical algorithms for permutation pattern avoidance?

MY RESEARCH: CAN WE TREAT PATTERN AVOIDANCE AS AN EXPERIMENTAL SCIENCE?

Example Experiment:

For each $\Pi \subseteq S_4$ **Over two million subsets**

- 1. Compute $|AV_1(\Pi)|, \ldots, |AV_{16}(\Pi)|$ The hard part!
- 2. Search for sequence in OEIS

My Research: Can we build fast and practical algorithms for permutation pattern avoidance?

DETECTING PATTERNS IS NP-HARD (BBL '98)

Best Algorithms for permutation size *n* and pattern size *k*:

- ► $O(1.79^n \cdot nk)$ time (Bruner, Lackner, 2012)
- ► $2^{O(k^2 \log k)} \cdot n$ time (Guillemot, Marx, 2014)

MY IDEA: AMORTIZE AVOIDANCE-DETECTION COST The Insight:

Can circumvent NP-hardness issue by asking

which permutations contain a pattern,instead ofif a permutation contains a pattern.

My Algorithm Can:

- ▶ Do avoidance detection in linear time using information about smaller permutations.
- ▶ For a set of patterns $\Pi \subseteq S_k$, compute sequence

$$|AV_1(\Pi)|, |AV_2(\Pi)|, \dots, |AV_n(\Pi)|$$

- in $O(|AV_{< n-1}(\Pi)| \cdot k)$ time and $O(n^k)$ space.
- ► Compute $A_{16}(\Pi)$ for every $\Pi \subseteq S_4$ on my laptop in 3 hrs and 15 min.

Part 1: An Experiment on Millions of Sets

are 1. The Experiment on winners of Sets

Examining $|AV_1(\Pi)|, \ldots, |AV_{16}(\Pi)|$ for $\Pi \subseteq S_4$.

OEIS ANALYSIS FOR $\Pi \subseteq S_4$ WITH $|\Pi| > 4$

Sequences Ignored	OEIS	Distinct
	Matches	Se-
		quences
None	1,412,002	1,386
Constant ones	585,999	1,096
Polynomial of degree ≤ 3	32,019	446
Polynomial of degree ≤ 3 , or solvable using standard techniques or	289	32
able using standard techniques, or already known		

1. A228180 The number of single edges on the boundary of ordered trees with n edges.

Generating function is $(x \cdot C + 2x^3 \cdot C^4)/(1-x)$ where C is the generating function for the Catalan numbers.

Appears 11 times. Example match: {2413 4132 1432 1342 1324}

2. **A071721** $\frac{6n}{(n+1)(n+2)} \binom{2n}{n}$.

Appears 6 times. Example match: (2421,4122,1422,1224,1422)

 $\{2431\ 4132\ 1432\ 1342\ 1324\ 1423\}$

- 3. **A071717 Expansion of** $(1 + x^2C)C^2$, where *C* is the generating function for Catalan numbers. Appears 7 times. Example match: $\{2431\ 3142\ 4132\ 1432\ 1342\ 1324\ 1423\}$
- 4. **A071726** Expansion of $(1 + x^3C)C$, where C is the generating function for Catalan numbers. Appears 6 times. Example match: $\{2431\ 2413\ 3142\ 4132\ 1432\ 1342\ 1324\ 1423\}$
- 5. A071742 Expansion of (1 + x⁴C)C, where C is the generating function for Catalan numbers.
 (Now proven by Struct algorithm!)
 Appears 3 times. Example match:
 {2431 2143 3142 4132 1432 1342 1324 1423 1243}

6. **A000778** C(n) + C(n+1) - 1, where C(n) is the *n*-th Catalan number.

Appears 24 times. Example match: {2431 3142 4132 1432 1342 1324}

7. A109262 A Catalan transform of the Fibonacci numbers.

Appears 4 times. Example match:

{2413 4132 1432 1342 1423}

8. A119370 G.f. satisfies

$$A(x) = 1 + xA(x)^{2} + x^{2}(A(x)^{2} - A(x)).$$

Appears 3 times. Example match:

{2413 3142 1432 1342 1423}

9. A124671 Row sums of a triangle generated from Eulerian numbers.

G.f. equals $x(1 - 3x + 3x^2)/((1 - 2x)(x - 1)^4)$ **.** Appears 4 times. Example match: {2341 2134 3412 3124 1342 1324 4123 1243}

10. A035929 Number of $n \times n$ Catalan paths starting with an m-pyramid for some m, and followed by a pyramid free path.

Appears 14 times. Example match: {2143 3142 1432 1342 1324}

WHAT DOES A035929 COUNT?

Description: Number of $n \times n$ Catalan paths starting with an m-pyramid for some m, and followed by a pyramid free path.

Example for n = 8:

A Catalan path goes from A to B without ever going below the diagonal.

Part 2: The Algorithm

Building $AV_1(\pi), \dots, AV_n(\pi)$ for single pattern $\pi \in S_k$.

BUILDING AV $_n(\pi)$ Layer by Layer

Strategy: Build each $AV_n(\pi)$ out of $AV_{n-1}(\pi)$.

Runtime: $O(|AV_{\leq n-1}(\pi)| \cdot n \cdot \text{time to check single permutation})$

The Problem: Detecting patterns in a single perm is NP-hard!

	Permutation in S_4	Avoids 123?
Remove first letter:	2 5143	yes
	4132	

	Permutation in S_4	Avoids 123?
Remove first letter:	2 5143	yes
	4132	
Remove second letter:	25 143	yes
	2 143	

	Permutation in S_4	Avoids 123?
Remove first letter:	2 5143	yes
	4132	
Remove second letter:	25 143	yes
	2 143	
Remove third letter:	25 <mark>1</mark> 43	yes
	14 32	

	Avoids 123?
2 5143	yes
4132	
25 143	yes
2 143	
2514 3	yes
14 32	
251 4 3	yes
241 3	-
	4132 25143 2 143 25143 14 32 25143

Does 25143 avoid 123?

	Permutation in S_4	Avoids 123?
Remove first letter:	2 5143	yes
	4132	
Remove second letter:	25 143	yes
	2 143	
Remove third letter:	25143	yes
	14 32	
Remove fourth letter:	25143	yes
	241 3	

All four tests pass \longrightarrow 25143 avoids 123

Detecting pattern avoidance in time O(k).

Let *w* be a permutation.

Defn: $w \downarrow_i$ is the reduction of w without its i-th letter.

Example: $23514 \downarrow_2 = red(2\ 514) = 2413$.

Theorem: If $w \downarrow_1, w \downarrow_2, \dots, w \downarrow_{k+1}$ avoid π , then so does w.

Does w avoid π ?

	Permutation in S_{n-1}	Avoids π ?
Remove 1-st letter:	$w\downarrow_1$	yes
Remove 2-nd letter:	$w\downarrow_2$	yes
: :	÷	:
Remove $(k + 1)$ -th letter:	$w\downarrow_{k+1}$	yes

All k + 1 tests pass $\longrightarrow w$ avoids π .

A FAST ALGORITHM FOR BUILDING $AV_n(\pi)$

Strategy: Build each $AV_n(\pi)$ using information about $AV_{n-1}(\pi)$. **Runtime:** $O(|AV_{\leq n-1}(\pi)| \cdot n \cdot k)$

The New Problem: Storing all of $AV_{n-1}(\pi)$ is impractical.

HOW MUCH DO WE ACTUALLY HAVE TO STORE?

Observation: w and $w \downarrow_1, \dots, w \downarrow_{k+1}$ are order-isomorphic in their final n-k-1 letters.

Algorithmic Consequence: Can detect whether w contains π using only the subtree rooted at $w \downarrow_1 \downarrow_1 \cdots \downarrow_1$.

SPACE-EFFICIENT COMPUTATION OF $|A_n(\pi)|$

The Idea: Instead of visiting avoiders in BFS order, visit avoiders in DFS of *k*-level BFS's.

Space Usage: $O(n \cdot \text{Max size of } k\text{-level BFS}) = O(n^{k+1}).$

THANKS FOR LISTENING!

Link to Paper: (Published in *Mathematics of Computation*) arxiv.org/abs/1509.08216

Link to Software and Data:

github.com/williamkuszmaul/patternavoidance

Contact Information:

kuszmaul@cs.stanford.edu