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CLASSIC RESEARCH PROBLEM

Pick small set of patterns Π.
The Question:

How many permutations of size n avoid all π ∈ Π?

Notation: Set of such permutations is called AVn(Π).
For single patterns π, we say AVn(π) instead of AVn({π}).

Example:

Π = {2413, 3142}.
|AVn({2413, 3142})| is the n-th Schröder number.



MY RESEARCH: CAN WE TREAT PATTERN AVOIDANCE

AS AN EXPERIMENTAL SCIENCE?

Example Experiment:
For each Π ⊆ S4

1. Compute |AV1(Π)|, . . . , |AV16(Π)|
2. Search for sequence in OEIS

My Research: Can we build fast and practical algorithms for
permutation pattern avoidance?



MY RESEARCH: CAN WE TREAT PATTERN AVOIDANCE

AS AN EXPERIMENTAL SCIENCE?

Example Experiment:
For each Π ⊆ S4 ←− Over two million subsets

1. Compute |AV1(Π)|, . . . , |AV16(Π)| ←− The hard part!
2. Search for sequence in OEIS

My Research: Can we build fast and practical algorithms for
permutation pattern avoidance?



DETECTING PATTERNS IS NP-HARD (BBL ’98)

1 8 3 6 2754

Permutation

Pattern

avoids

12 34

Best Algorithms for permutation size n and pattern size k:
I O(1.79n · nk) time (Bruner, Lackner, 2012)
I 2O(k2 log k) · n time (Guillemot, Marx, 2014)



MY IDEA: AMORTIZE AVOIDANCE-DETECTION COST
The Insight:
Can circumvent NP-hardness issue by asking

which permutations contain a pattern,
instead of

if a permutation contains a pattern.

My Algorithm Can:

I Do avoidance detection in linear time using information
about smaller permutations.

I For a set of patterns Π ⊆ Sk, compute sequence

|AV1(Π)|, |AV2(Π)|, . . . , |AVn(Π)|

in O(|AV≤n−1(Π)| · k) time and O(nk) space.
I Compute A16(Π) for every Π ⊆ S4 on my laptop

in 3 hrs and 15 min.



Part 1: An Experiment on Millions of Sets

Examining |AV1(Π)|, . . . , |AV16(Π)| for Π ⊆ S4.



OEIS ANALYSIS FOR Π ⊆ S4 WITH |Π| > 4

Sequences Ignored OEIS
Matches

Distinct
Se-
quences

None 1,412,002 1,386
Constant ones 585,999 1,096
Polynomial of degree ≤ 3 32,019 446
Polynomial of degree ≤ 3, or solv-
able using standard techniques, or
already known

289 32



SOME INTERESTING SEQUENCES

1. A228180 The number of single edges on the boundary of
ordered trees with n edges.
Generating function is (x · C + 2x3 · C4)/(1− x) where C is
the generating function for the Catalan numbers.
Appears 11 times. Example match:
{2413 4132 1432 1342 1324}

2. A071721 6n
(n+1)(n+2)

(2n
n

)
.

Appears 6 times. Example match:
{2431 4132 1432 1342 1324 1423}



SOME INTERESTING SEQUENCES

3. A071717 Expansion of (1 + x2C)C2, where C is the
generating function for Catalan numbers.
Appears 7 times. Example match:
{2431 3142 4132 1432 1342 1324 1423}

4. A071726 Expansion of (1 + x3C)C, where C is the
generating function for Catalan numbers.
Appears 6 times. Example match:
{2431 2413 3142 4132 1432 1342 1324 1423}

5. A071742 Expansion of (1 + x4C)C, where C is the
generating function for Catalan numbers.
(Now proven by Struct algorithm!)
Appears 3 times. Example match:
{2431 2143 3142 4132 1432 1342 1324 1423 1243}



SOME INTERESTING SEQUENCES

6. A000778 C(n) + C(n + 1)− 1, where C(n) is the n-th
Catalan number.
Appears 24 times. Example match:
{2431 3142 4132 1432 1342 1324}

7. A109262 A Catalan transform of the Fibonacci numbers.
Appears 4 times. Example match:
{2413 4132 1432 1342 1423}

8. A119370 G.f. satisfies
A(x) = 1 + xA(x)2 + x2(A(x)2 − A(x)).
Appears 3 times. Example match:
{2413 3142 1432 1342 1423}



SOME INTERESTING SEQUENCES

9. A124671 Row sums of a triangle generated from Eulerian
numbers.
G.f. equals x(1− 3x + 3x2)/((1− 2x)(x− 1)4).
Appears 4 times. Example match:
{2341 2134 3412 3124 1342 1324 4123 1243}

10. A035929 Number of n× n Catalan paths starting with an
m-pyramid for some m, and followed by a pyramid free
path.
Appears 14 times. Example match:
{2143 3142 1432 1342 1324}



WHAT DOES A035929 COUNT?

Description: Number of n× n Catalan paths starting with an
m-pyramid for some m, and followed by a pyramid free path.

Example for n = 8:

{

{

A

B

with a pyramid
Must begin

be pyramid free.

Remainder must

A Catalan path

goes from A to B

without ever going

below the diagonal.



Part 2: The Algorithm

Building AV1(π), . . . ,AVn(π) for single pattern π ∈ Sk.



BUILDING AVn(π) LAYER BY LAYER

AV4(213): . . . . . . . . . . . . . . .

AV3(213): 123 ��HH213 312 132 231 321

AV2(213): 12 21

AV1(213): 1

Strategy: Build each AVn(π) out of AVn−1(π).
Runtime: O(|AV≤n−1(π)| · n · time to check single permutation)

The Problem: Detecting patterns in a single perm is NP-hard!



PATTERN DETECTION BY INDUCTION

Does 25143 avoid 123?

Permutation in S4 Avoids 123?
Remove first letter: 25143 yes

4132
Remove second letter: 25143 yes

2 143
Remove third letter: 25143 yes

14 32
Remove fourth letter: 25143 yes

241 3

All four tests pass −→ 25143 avoids 123
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Remove first letter: 25143 yes
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241 3
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DETECTING PATTERN AVOIDANCE IN TIME O(k).
Let w be a permutation.

Defn: w ↓i is the reduction of w without its i-th letter.

Example: 23514 ↓2= red(2 514) = 2413.

Theorem: If w ↓1, w ↓2, . . . ,w ↓k+1 avoid π, then so does w.

Does w avoid π?
Permutation in Sn−1 Avoids π?

Remove 1-st letter: w ↓1 yes
Remove 2-nd letter: w ↓2 yes

...
...

...
Remove (k + 1)-th letter: w ↓k+1 yes

All k + 1 tests pass −→ w avoids π.



A FAST ALGORITHM FOR BUILDING AVn(π)

AV4(213): . . . . . . . . . . . . . . .

AV3(213): 123 ��HH213 312 132 231 321

AV2(213): 12 21

AV1(213): 1

Strategy: Build each AVn(π) using information about AVn−1(π).
Runtime: O(|AV≤n−1(π)| · n · k)

The New Problem: Storing all of AVn−1(π) is impractical.



HOW MUCH DO WE ACTUALLY HAVE TO STORE?

{
w ↓1 w ↓2 w ↓3 · · · w ↓k+1

w ↓1↓1 · · · ↓1

k layers

Observation: w and w ↓1, . . . ,w ↓k+1 are order-isomorphic in
their final n− k− 1 letters.
Algorithmic Consequence: Can detect whether w contains π
using only the subtree rooted at w ↓1↓1 · · · ↓1.



SPACE-EFFICIENT COMPUTATION OF |An(π)|

n

w

k
k+1

k+2
k+3

. . .

The Idea: Instead of visiting avoiders in BFS order, visit
avoiders in DFS of k-level BFS’s.
Space Usage: O(n ·Max size of k-level BFS) = O(nk+1).



THANKS FOR LISTENING!

Link to Paper: (Published in Mathematics of Computation)
arxiv.org/abs/1509.08216

Link to Software and Data:
github.com/williamkuszmaul/patternavoidance

Contact Information:
kuszmaul@cs.stanford.edu

arxiv.org/abs/1509.08216
github.com/williamkuszmaul/patternavoidance
kuszmaul@cs.stanford.edu

