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The Plan

@ Fishburn-enumerated objects
@ Generating functions, asymptotics, congruences
@ The Catalan connection
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Fishburn-Enumerated Objects



Interval Orders

Definition (Fishburn, 1970)

A partially ordered set (P, <) is an interval order if we can assign
to every x € P a (closed, bounded) interval I, such that the

following holds:
x <y <= max(l) < min(ly).

The multiset {/; x € P} is an interval representation of P.

an interval order
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A partially ordered set (P, <) is an interval order if we can assign
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Interval Orders

Definition (Fishburn; 1970)

A partially ordered set (P, <) is an interval order if we can assign
to every x € P a (closed, bounded) interval I, such that the
following holds:

x <y <= max(l) < min(ly).

The multiset {/; x € P} is an interval representation of P.

Theorem (Fishburn)
A poset is an interval order iff it avoids 2+2 as induced subposet.




Interval Orders

Definition (Fishburn; 1970)

A partially ordered set (P, <) is an interval order if we can assign
to every x € P a (closed, bounded) interval I, such that the
following holds:

x <y <= max(l) < min(ly).

The multiset {/; x € P} is an interval representation of P.

Theorem (Fishburn)
A poset is an interval order iff it avoids 242 as induced subposet.

Definition

Let f, be the number of (unlabeled) interval orders with n
elements. These are known as Fishburn numbers (A022493).




Fishburn Matrices

A Fishburn matrix is a square matrix M = (m,-d-)j{j:1 of nonegative
integers such that

e M is upper-triangular (i.e., m; j = 0 whenever i > j), and

@ every row and every column of M has a nonzero entry.
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A Fishburn matrix is a square matrix M = (m,-d-)j{j:1 of nonegative
integers such that

e M is upper-triangular (i.e., m; j = 0 whenever i > j), and
@ every row and every column of M has a nonzero entry.

The weight of a matrix is the sum of its entries.
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Fishburn Matrices

A Fishburn matrix is a square matrix M = (m,-d-)j{j:1 of nonegative
integers such that

e M is upper-triangular (i.e., m; j = 0 whenever i > j), and
@ every row and every column of M has a nonzero entry.

The weight of a matrix is the sum of its entries.
A matrix is primitive if all its entries are 0 or 1.

{1 {2 {11 {1




From Matrices to Interval Orders

Theorem (Fishburn, 1970's; Dukes—Parviainen, 2010)

There are f, Fishburn matrices of weight n.

1 2 3 4 [4,4]
111]3 {11.1].[1.2],
2 2 [1,2],[1,2] [2.4] [2.4] 3, 3]
30 |1 2,41, [2,4],
47 1] 3.3, [4. 4]}

[1,1] [1.2] [1.2] [1,2]



From Matrices to Interval Orders

Theorem (Fishburn, 1970’s; Dukes—Parviainen, 2010)

There are f, Fishburn matrices of weight n.

1 2 3 4 4, 4]
11]3 {112,
2 2 [1,2],[1,2], [2.4] [24] .3]
31 2.4, [2.4]
a0 1] 3,31, 4,41}

[1,1] [1,2] [1,2] [1,2]



From Matrices to Interval Orders

Theorem (Fishburn, 1970's; Dukes—Parviainen, 2010)

There are f, Fishburn matrices of weight n.

1 2 3 4 [4.4]
1]1]3 {111,112,
2 2 [1,2],]1, 2], [2.4] [2.4] 3, 3]
3|1 [2.4],[2,4],
47 1] 3.3, [4. 4]}

[1,1] [1,2] [1,2] [1,2]

Fishburn matrices of weight n, with first row of weight k and last
column of weight ¢ correspond to interval orders of size n, with k
minimal and { maximal elements.




More Fishburn Objects: Avoiders of Vincular Patterns

Theorem (Bousquet-Mélou—Claesson—Dukes—Kitaev, 2009;

Parviainen, 2009)

|Ava(P)| = [Avp(Q)] = .
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Generating Functions, Asymptotics, Congruences



The Generating Function

For n > 0, the notation (a; q), denotes the product
(1—-a)(1 —ag)(1—ag®)---(1—aq" ™).




The Generating Function

For n > 0, the notation (a; q), denotes the product
(1—-a)(1 —ag)(1—ag®)---(1—aq" ™).

Theorem (Zagier, 2001; Bousquet-Mélou et al., 2009)

k

S =Y T[a-1-xY) =) (1-x1-x),.
n=1 k=1j k=1

=1
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Deriving the Generating Function

@ recall: f, ...number of Fishburn matrices of weight n

@ fiy ...number of Fishburn matrices of weight k + ¢, with last
column of weight ¢ (k >0, £>1)

o F(x,y) =2k fiexy" (hence Fx,x) = 3,51 fox”)

@ Pry ... number of primitive Fishburn matrices of weight k -+ ¢,
with last column of weight £

® P(x,y) =y 0 Prex’y’

Px,y)= v + xy + xy* 4+ x%% +

{1 EIEN !
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@ recall: f, ...number of Fishburn matrices of weight n

@ fr ...number of Fishburn matrices of weight k + ¢, with last
column of weight ¢ (k >0, £>1)
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F(x,y) = P(s%, 15)-




Deriving the Generating Function

@ recall: f, ...number of Fishburn matrices of weight n

@ fr ...number of Fishburn matrices of weight k + ¢, with last
column of weight ¢ (k >0, £>1)

o F(x,y) =k fiexy" (hence F(x,x) = 3,51 fax”)

@ Pry ... number of primitive Fishburn matrices of weight k + ¢,
with last column of weight £

® P(x,y) =y 0 Prex’y’

Observation
F(x,y) = P(s%, 15)-

@ Goal: show that P(x,y) => "7, (ﬁ 1%) and therefore
n

F(x,y)=> 721 (1-y;1—x), and
Flx,x) = 302 (I=x;1=x),,.



Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.
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Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

1 1
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Idea: extend a primitive Fishburn matrix by adding a column.
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Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

|1 |1 ‘moved’
: . 1 111 1 1 1|4 1-entry
. 1 Lo 1 ‘copied’
o T T A ey
................ 1] Lo 12
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Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

|1 |1 ‘moved’
' 1 L1 1 1 1|4 1l-entry
1 — 1 ‘copied’
1 111 4~ l-entry
L 1 < ignored’

1 l-entry



Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

|1 |1 ‘moved’
' 1 L1 1 1 1|4 1l-entry
1 — 1 ‘copied’
1 1 1/1-entry
L 1 < ignored’

1 l-entry

e 33 =27 possibilities, 1 of them is ‘bad’.
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Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

|1 |1 ‘moved’
' 1 L1 1 1 1 ‘/l—entry
1 . 1 ‘copied’
ool 1 & l-entry
L 1 ‘\‘ignored’

S 1 1-entry

e 33 =27 possibilities, 1 of them is ‘bad’.
o In terms of gen. functions: x¥y* — yx*(x 4+ y 4+ xy)* — yxky’.
o Hence: P(x,y) =y +yP(x,x +y+xy) = yP(x,y),



Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

|1 |1 ‘moved’
: ) 1 1|1 1 1 1|4 l-entry
P 1 1 ‘copied’
1 1 1/1-entry

1 ! ~w ‘ignored’
............ o 1 l-entry

33 = 27 possibilities, 1 of them is ‘bad’.
In terms of gen. functions: x¥y’ — yxK(x +y + xy)! — yxkyt.
Hence: P(x,y) =y + yP(x,x +y + xy) — yP(x,y),

e, Pixoy) = (1= g5 ) + (1= o) Plox+y +x0).
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Solving the Functional Equation

Recall: P(x,y) = (1— ﬁ) + (1— ﬁ) P(x,x+y + xy)

Note: the substitution y — x 4 y + xy is equivalent to
(1+y) = (1+y)(1+x).

1 1
P(x,y) = (17 m) + (17 m) P(x,x +y+xy)
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Solving the Functional Equation

Recall: P(x,y) = <1 - m) + (1 - m) P(x,x +y + xy)

Note: the substitution y — x 4 y + xy is equivalent to
(1+y) = (1+y)(1+x).

n=(1-1
- (1-5
(1
2 (s

) (17 %) P(x,x +y + xy)

) ( 1i)<1‘(l+y)1<1+x))+
)( mﬂl‘m)*

)
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Solving the Functional Equation

Recall: P(x,y) = (1 - m) + (1 — m) P(x,x+y + xy)
Note: the substitution y — x 4 y + xy is equivalent to
(1+y) = (1+y)(1+x).

n=(1- T
(1 ) < I )(1‘(1+y)1<1+x))+
(1 )( mﬂl‘m)*“

),
n>1(1+y 1+ x

Hence: F(x,y) =3 5, (1—yil—x), and F(x) =3 (1 —x1—x),.

) (17 L) P(x,x +y + xy)

'—‘—|—r—'—|—

_|_
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e Compute f, for n < 1000 (easy, since we know the GF)
@ Observe f,, ~ c"n! for a constant c¢. Wanted: the value of c.
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Asymptotics

Theorem (Zagier, 2001)

fo=n (&) 'vn(a+0(2) witha=123em/12,

How to deduce the formula numerically:
e Compute f, for n < 1000 (easy, since we know the GF)

@ Observe f,, ~ c"n! for a constant c¢. Wanted: the value of c.

. £ .
o |dea: define r,, = ,’;}1 Then lim,_ o rm = c.
n

@ Problem: riggp = 0.60823163... is still far from
5 =0.60792710....

w2




Towards the Limit

Problem: how to estimate the limit of r, = ’;';;nl?

e For a sequence (a,)nen, let A(a,) be the sequence
(an+1 — an)nen (“the difference of (a,)").
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Towards the Limit

Problem: how to estimate the limit of r, = ’;';;nl?

e For a sequence (a,)nen, let A(a,) be the sequence
(an+1 — an)nen (“the difference of (a,)").

o Observe: for fixed d € Z \ {0}, A(n9) = dn?=! + O(n?=2).

e Suppose r, = ¢+ S+ + 73 + - for some constants «;.

® Then nry =cn+ar+ %2 +--- and A(nr,) = ¢+ O(%).

o More generally, for fixed k € N, AKX (nkr,/k!) = c + O(nkl+1 )-
@ Set k = 100 and define (t,)nen = AKX (nkr,/k!). Then

|t1000 — %\ < 107189 suggesting that % is the limit of t,,
and therefore also of r,.




Congruences

@ Sequence of f, mod 5, for n=0,...,99:

1,1,2,0,0,3,2,4,0,0,3,4,3,0,0,0,2,4,0,0,3,1, 2,0,0,
2,1,2,0,0,4,3,1,0,0,0,3,1,0,0,2,2,4,0,0,0,3,1,0,0,
1,4,3,0,0,1,1,2,0,0,0,3,1,0,0,0,3,1,0,0,3,2,4,0,0,
4,0,0,0,0,3,2,4,0,0,3,1,2,0,0,4,4,3,0,0,3,4,3,0,0



Congruences

@ Sequence of f, mod 5, for n=0,...,99:
17 1727 07 07 3? 2747 07 O, 3747 37 07 07 07 27 47 07 07 37 172707 O,
27 1727070747371707070737 170707272’4707070737170707
1,4,3,0,0,1,1,2,0,0,0,3,1,0,0,0,3,1,0,0,3,2,4,0,0,
4,0,0,0,0,3,2,4,0,0,3,1,2,0,0,4,4,3,0,0,3,4,3,0,0

o apparently, fsxi3 = fsxqa =0 and fogyo = 2541 mod b.



Congruences

@ Sequence of f, mod 5, for n=0,...,99:

1,1,2,0,0,3,2,4,0,0,3,4,3,0,0,0,2,4,0,0,3,1, 2,0,0,
2,1,2,0,0,4,3,1,0,0,0,3,1,0,0,2,2,4,0,0,0,3,1,0,0,
1,4,3,0,0,1,1,2,0,0,0,3,1,0,0,0,3,1,0,0,3,2,4,0,0,
4,0,0,0,0,3,2,4,0,0,3,1,2,0,0,4,4,3,0,0,3,4,3,0,0

o apparently, fsxi3 = fsxqa =0 and fogyo = 2541 mod b.
@ Sequence of f, mod 7, for n=0,...,99:

1,1,2,5,1,4,0,6,1,6,1,3,5,0,0,1,1,6,4,2,0,0, 3,4, 3,
2,1,0,0,6,0,0,0,0,0,1,4,5,2,6,3,0,0,6,5,2,6,3,0, 1,
0,0,0,0,0,0,0,2,1,6,4,2,0,4,4,2,5,1,4,0,0,1,5,2,6,
3,0,1,3,0,0,0,0,0,1,5,2,5,1,4,0,6,0,3,4,5,6,0,1,5



Congruences

@ Sequence of f, mod 5, for n=0,...,99:

1,1,2,0,0,3,2,4,0,0,3,4,3,0,0,0,2,4,0,0,3,1,2,0,0,
2,1,2,0,0,4,3,1,0,0,0,3,1,0,0,2,2,4,0,0,0,3,1,0,0,
1,4,3,0,0,1,1,2,0,0,0,3,1,0,0,0,3,1,0,0,3,2,4,0,0,
4,0,0,0,0,3,2,4,0,0,3,1,2,0,0,4,4,3,0,0,3,4,3,0,0

@ apparently, f5x 13 = fsx 14 = 0 and fsin = 2f5,1 1 mod 5.

@ Sequence of f, mod 7, for n=0,...,99:
1,1,2,5,1,4/0,6,1,6,1,3,5,0,0,1,1,6,4,2,0,0,3,4,3,
2,1,0,0,6,0,0,0,0,0,1,4,5,2,6,3,0,0,6,5,2,6,3,0, 1,
0,0,0,0,0,0,0,2,1,6,4,2,0,4,4,2,5,1,4,0,0,1,5,2,6,
3,0,1,3,0,0,0,0,0,1,5,2,5,1,4,0,6,0,3,4,5,6,0,1,5

@ apparently, 77416 =0 and 7412 + frkr3 =0 mod 7.



Congruences

Theorem (Andrews—Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a
i > 1 such that for every k > 1, we have

fpk—l = fpk—2 = = pk—i = 0 mod P-
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2014].
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For any prime p that is a quadratic nonresidue mod 24 there is a
i > 1 such that for every k > 1, we have

fpk—l = fpk—2 = = pk—i = 0 mod P-

@ Generalized to congruences modulo prime powers [Straub,
2014].

@ Generalized to linear congruences, like fsy0 = 25441 mod b
or fi1k+7 + 2f1n+3 = 3f1k+4 mod 11 [Garvan, 2014].



Congruences

Theorem (Andrews—Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a
i > 1 such that for every k > 1, we have

fpk—l = fpk—2 = = pk—i = 0 mod P-

@ Generalized to congruences modulo prime powers [Straub,
2014].

@ Generalized to linear congruences, like fsy0 = 25441 mod b
or fi1k+7 + 2f1n+3 = 3f1k+4 mod 11 [Garvan, 2014].

Open problem
Does any of the congruence properties of f, have a combinatorial
explanation?
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The Catalan Connection
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Dyck Paths and Their Statistics

ret =2
tail =3

@ ret(D) ...number of returns of D (i.e., down-steps reaching
the x-axis)

e tail(D) ...number of down steps following the last up-step.

Theorem (Kreweras, 1970; Vaillé, 1997)

The statistics ret and tail have symmetric joint distribution on the
set of Dyck paths of a given length.




The Catalan—Fishburn Connection

Theorem (Kim—Roush, 1978; Disanto—Ferrari—Pinzani—Rinaldi,

2010)

The (2+2,N )-free posets of size n, as well as the (24+2,3+1)-free
posets of size n are counted by Catalan numbers.

3+1 N



Catalan Classes of Fishburn Matrices

Let M = (mj) be a Fishburn matrix.
@ NE-pair ...a pair of nonzero cells m; and m;j such that
i>iandj </
@ SE-pair ...a pair of nonzero cells mj; and mj;/j such that
i<i, j<j and i <j.

J J J J
[2]1 21
i 4]3 i 4]3
P 1 i 1
.......... 1 P 1
L 5l et 5




Catalan Classes of Fishburn Matrices

Let M = (mj) be a Fishburn matrix.
@ NE-pair ...a pair of nonzero cells m;; and mj/;; such that
i>iandj < /.
@ SE-pair ...a pair of nonzero cells mj; and m;j such that
i<i,j<j and i <j. )
A Fishburn matrix is NE-free (or SE-free) if it has no NE-pair (or
SE-pair, respectively).
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Catalan Classes of Fishburn Matrices

Let M = (mj) be a Fishburn matrix.

@ NE-pair ...a pair of nonzero cells m;; and mj/;; such that
i>iandj < /.

@ SE-pair ...a pair of nonzero cells mj; and m;j such that
i<i,j<j and i <j.

Definition
A Fishburn matrix is NE-free (or SE-free) if it has no NE-pair (or
SE-pair, respectively).

| \

A\

Theorem (Dukes—J.—Kubitzke, 2011; J., 2015)

(24+2,N )-free posets correspond to SE-free Fishburn matrices,
(2+2,3+1)-free posets correspond to NE-free Fishburn matrices.




Statistics of Fishburn Matrices

Let M = (mj) be a k x k Fishburn matrix.

o NE-extreme ...a nonzero cell mj; such that all the other cells
inrows 1,...,/ and columns j, ..., k are zeros.

1/3 Co 13
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Statistics of Fishburn Matrices

Let M = (mj) be a k x k Fishburn matrix.

o NE-extreme ...a nonzero cell mj; such that all the other cells
inrows 1,...,/ and columns j, ..., k are zeros.

@ SE-extreme ...a nonzero diagonal cell m;; such that all the
other cells in row i are zeros.
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Statistics of Fishburn Matrices

Let M = (mj) be a k x k Fishburn matrix.

o NE-extreme ...a nonzero cell mj; such that all the other cells
inrows 1,...,/ and columns j, ..., k are zeros.

@ SE-extreme ...a nonzero diagonal cell m;; such that all the
other cells in row / are zeros.

e ne(M),se(M),lc(M) ...number of NE-extreme cells, number
of SE-extreme cells, weight of the last column of M,
respectively.
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Dyck Paths ~ (2+2,N)-free Posets ~ SE-free Matrices
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Dyck Paths ~ (2+2,N)-free Posets ~ SE-free Matrices

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = Ic(M).




Dyck Paths ~ (2+2,N)-free Posets ~ SE-free Matrices

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = Ic(M).

In particular, ne(-) and Ic(-) have symmetric joint distribution on
SE-free Fishburn matrices.
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Dyck Paths ~ (2+2,3+1)-free Posets ~ NE-free Matrices

tail=3=Ic [2]
ret =2 =se ¢_[11

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = Ic(M).




Dyck Paths ~ (2+2,3+1)-free Posets ~ NE-free Matrices

tail=3=Ic [2]
ret =2 =se ¢_[11

S i

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = Ic(M).

In particular, se(-) and Ic(-) have symmetric joint distribution on
NE-free Fishburn matrices.
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Fishburn matrices se<rne

NE-free SE-free

se<>lc ne<lc



Symmetries of Fishburn Objects

Theorem (J., 2015)

For every n, the two statistics ne(-) and se(-) have symmetric joint
distribution on Fishburn matrices of weight n. This is witnessed by
an involution that preserves the value of Ic(-).

Theorem (J., 2015)

For every n, the two statistics ne(-) and Ic(-) have symmetric joint
distribution on Fishburn matrices of weight n.
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Symmetries of Fishburn Objects

Theorem (J., 2015)

For every n, the two statistics ne(-) and se(-) have symmetric joint
distribution on Fishburn matrices of weight n. This is witnessed by
an involution that preserves the value of Ic(-).

A

Theorem (J., 2015)

For every n, the two statistics ne(-) and Ic(-) have symmetric joint
distribution on Fishburn matrices of weight n.

Open problem

Prove the second theorem bijectively.




Open Problem: Avoiders of [+

There is a bijection between Fishburn matrices and permutations
avoiding [+, which transforms the statistics as follows:

LR-maxima RL-minima  RL-maxima LR-minima
weight od first row Ie(+) ne(-) # of nonzero diagonal cells

Moreover, inverse permutation is mapped to the ‘diagonal flip’ of
the matrix.
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the matrix.

[




Open Problem: Avoiders of [+

There is a bijection between Fishburn matrices and permutations
avoiding [+, which transforms the statistics as follows:
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There is a bijection between Fishburn matrices and permutations
avoiding [+, which transforms the statistics as follows:
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weight od first row Ie(+) ne(-) # of nonzero diagonal cells
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Open Problem: Avoiders of [+

There is a bijection between Fishburn matrices and permutations
avoiding [+, which transforms the statistics as follows:

LR-maxima RL-minima RL-maxima LR-minima
weight od first row Ie(+) ne(-) # of nonzero diagonal cells

Moreover, inverse permutation is mapped to the ‘diagonal flip’ of
the matrix.




Open Problem: Avoiders of [+

Conjecture

There is a bijection between Fishburn matrices and permutations
avoiding [+, which transforms the statistics as follows:

LR-maxima RL-minima  RL-maxima LR-minima
weight od first row Ie(+) ne(-) # of nonzero diagonal cells

Moreover, inverse permutation is mapped to the ‘diagonal flip’ of
the matrix.

| A\

Conjecture

The statistics “number of RL-maxima” and “number of
RL-minima” have symmetric joint distribution over | ":-avoiders of
a given size.




Open Problem: Typical Properties of Fishburn Objects

Open problem

What does a uniformly random interval order (or Fishburn matrix)
of large size look like? Can you generate it efficiently?




Open Problem: Typical Properties of Fishburn Objects

Open problem

What does a uniformly random interval order (or Fishburn matrix)
of large size look like? Can you generate it efficiently?

Theorem (Drmota, 2011; Brightwell-Keller, 2011)

The probability that a random Fishburn matrix of weight n is
primitive tends to e ™/6 ~ 0.193 as n — oo.




The End

Thank you for your attention!
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