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Part I

Fishburn-Enumerated Objects



Interval Orders

Definition (Fishburn, 1970)

A partially ordered set (P,≺) is an interval order if we can assign
to every x ∈ P a (closed, bounded) interval Ix , such that the
following holds:

x ≺ y ⇐⇒ max(Ix) < min(Iy ).

The multiset {Ix ; x ∈ P} is an interval representation of P.
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Let fn be the number of (unlabeled) interval orders with n
elements. These are known as Fishburn numbers (A022493).
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Fishburn Matrices

Definition

A Fishburn matrix is a square matrix M = (mi ,j)
d
i ,j=1 of nonegative

integers such that

M is upper-triangular (i.e., mi ,j = 0 whenever i > j), and

every row and every column of M has a nonzero entry.

The weight of a matrix is the sum of its entries.
A matrix is primitive if all its entries are 0 or 1.
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From Matrices to Interval Orders

Theorem (Fishburn, 1970’s; Dukes–Parviainen, 2010)

There are fn Fishburn matrices of weight n.
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Theorem

Fishburn matrices of weight n, with first row of weight k and last
column of weight ` correspond to interval orders of size n, with k
minimal and ` maximal elements.



From Matrices to Interval Orders

Theorem (Fishburn, 1970’s; Dukes–Parviainen, 2010)

There are fn Fishburn matrices of weight n.

1
2

1
1

1

2

3

4

1 2 3 4

[2, 4], [2, 4],

[3, 3], [4, 4]}

[2, 4] [2, 4]

[1, 1]

[3, 3]

[4, 4]

{[1, 1], [1, 2],
[1, 2], [1, 2],

[1, 2] [1, 2] [1, 2]

3

Theorem

Fishburn matrices of weight n, with first row of weight k and last
column of weight ` correspond to interval orders of size n, with k
minimal and ` maximal elements.



From Matrices to Interval Orders

Theorem (Fishburn, 1970’s; Dukes–Parviainen, 2010)

There are fn Fishburn matrices of weight n.

1
2

1
1

1

2

3

4

1 2 3 4

[2, 4], [2, 4],

[3, 3], [4, 4]}

[2, 4] [2, 4]

[1, 1]

[3, 3]

[4, 4]

{[1, 1], [1, 2],
[1, 2], [1, 2],

[1, 2] [1, 2] [1, 2]

3

Theorem

Fishburn matrices of weight n, with first row of weight k and last
column of weight ` correspond to interval orders of size n, with k
minimal and ` maximal elements.



More Fishburn Objects: Avoiders of Vincular Patterns

P :

Q:

=

=

Theorem (Bousquet-Mélou–Claesson–Dukes–Kitaev, 2009;
Parviainen, 2009)

|Avn(P)| = |Avn(Q)| = fn.



Part II

Generating Functions, Asymptotics, Congruences



The Generating Function

Notation

For n ≥ 0, the notation (a; q)n denotes the product
(1− a)(1− aq)(1− aq2) · · · (1− aqn−1).

Theorem (Zagier, 2001; Bousquet-Mélou et al., 2009)

∞∑
n=1

fnx
n =

∞∑
k=1

k∏
j=1

(
1− (1− x)j

)
=
∞∑
k=1

(1− x ; 1− x)k .
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Deriving the Generating Function

recall: fn . . . number of Fishburn matrices of weight n
fk,` . . . number of Fishburn matrices of weight k + `, with last
column of weight ` (k ≥ 0, ` ≥ 1)
F (x , y) =

∑
k,` fk,`x

ky ` (hence F (x , x) =
∑

n≥1 fnx
n)

pk,` . . . number of primitive Fishburn matrices of weight k + `,
with last column of weight `
P(x , y) =

∑
k,` pk,`x

ky `
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1− 1
1+y

)
+
(

1− 1
1+y

)
P(x , x + y + xy).
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Asymptotics

Theorem (Zagier, 2001)

fn = n!
(

6
π2

)n√
n
(
α + O

(
1
n

))
with α = 12

√
3

π5/2 e
π2/12.

How to deduce the formula numerically:

Compute fn for n . 1000 (easy, since we know the GF)

Observe fn ≈ cnn! for a constant c. Wanted: the value of c .

Idea: define rn = fn+1

nfn
. Then limn→∞ rn = c .

Problem: r1000 = 0.60823163 . . . is still far from
6
π2 = 0.60792710 . . . .
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. Then limn→∞ rn = c .

Problem: r1000 = 0.60823163 . . . is still far from
6
π2 = 0.60792710 . . . .



Towards the Limit

Problem: how to estimate the limit of rn = fn+1

nfn
?

For a sequence (an)n∈N, let ∆(an) be the sequence
(an+1 − an)n∈N (“the difference of (an)”).

Observe: for fixed d ∈ Z \ {0}, ∆(nd) = dnd−1 + O(nd−2).

Suppose rn = c + α1
n + α2

n2 + · · · for some constants αi .

Then nrn = cn + α1 + α2
n + · · · and ∆(nrn) = c + O( 1

n2 ).

More generally, for fixed k ∈ N, ∆(k)(nk rn/k!) = c + O( 1
nk+1 ).

Set k = 100 and define (tn)n∈N = ∆(k)(nk rn/k!). Then
|t1000 − 6

π2 | < 10−180, suggesting that 6
π2 is the limit of tn,

and therefore also of rn.
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Congruences

Sequence of fn mod 5, for n = 0, . . . , 99:

1, 1, 2, 0, 0, 3, 2, 4, 0, 0, 3, 4, 3, 0, 0, 0, 2, 4, 0, 0, 3, 1, 2, 0, 0,

2, 1, 2, 0, 0, 4, 3, 1, 0, 0, 0, 3, 1, 0, 0, 2, 2, 4, 0, 0, 0, 3, 1, 0, 0,

1, 4, 3, 0, 0, 1, 1, 2, 0, 0, 0, 3, 1, 0, 0, 0, 3, 1, 0, 0, 3, 2, 4, 0, 0,

4, 0, 0, 0, 0, 3, 2, 4, 0, 0, 3, 1, 2, 0, 0, 4, 4, 3, 0, 0, 3, 4, 3, 0, 0

apparently, f5k+3 ≡ f5k+4 ≡ 0 and f5k+2 ≡ 2f5k+1 mod 5.

Sequence of fn mod 7, for n = 0, . . . , 99:

1, 1, 2, 5, 1, 4, 0, 6, 1, 6, 1, 3, 5, 0, 0, 1, 1, 6, 4, 2, 0, 0, 3, 4, 3,

2, 1, 0, 0, 6, 0, 0, 0, 0, 0, 1, 4, 5, 2, 6, 3, 0, 0, 6, 5, 2, 6, 3, 0, 1,

0, 0, 0, 0, 0, 0, 0, 2, 1, 6, 4, 2, 0, 4, 4, 2, 5, 1, 4, 0, 0, 1, 5, 2, 6,

3, 0, 1, 3, 0, 0, 0, 0, 0, 1, 5, 2, 5, 1, 4, 0, 6, 0, 3, 4, 5, 6, 0, 1, 5

apparently, f7k+6 ≡ 0 and f7k+2 + f7k+3 ≡ 0 mod 7.
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Congruences

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a
i ≥ 1 such that for every k ≥ 1, we have

fpk−1 ≡ fpk−2 ≡ · · · ≡ fpk−i ≡ 0 mod p.

Generalized to congruences modulo prime powers [Straub,
2014].

Generalized to linear congruences, like f5k+2 ≡ 2f5k+1 mod 5
or f11k+7 + 2f11n+3 ≡ 3f11k+4 mod 11 [Garvan, 2014].

Open problem

Does any of the congruence properties of fn have a combinatorial
explanation?



Congruences

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a
i ≥ 1 such that for every k ≥ 1, we have

fpk−1 ≡ fpk−2 ≡ · · · ≡ fpk−i ≡ 0 mod p.

Generalized to congruences modulo prime powers [Straub,
2014].

Generalized to linear congruences, like f5k+2 ≡ 2f5k+1 mod 5
or f11k+7 + 2f11n+3 ≡ 3f11k+4 mod 11 [Garvan, 2014].

Open problem

Does any of the congruence properties of fn have a combinatorial
explanation?



Congruences

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a
i ≥ 1 such that for every k ≥ 1, we have

fpk−1 ≡ fpk−2 ≡ · · · ≡ fpk−i ≡ 0 mod p.

Generalized to congruences modulo prime powers [Straub,
2014].

Generalized to linear congruences, like f5k+2 ≡ 2f5k+1 mod 5
or f11k+7 + 2f11n+3 ≡ 3f11k+4 mod 11 [Garvan, 2014].

Open problem

Does any of the congruence properties of fn have a combinatorial
explanation?



Congruences

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a
i ≥ 1 such that for every k ≥ 1, we have

fpk−1 ≡ fpk−2 ≡ · · · ≡ fpk−i ≡ 0 mod p.

Generalized to congruences modulo prime powers [Straub,
2014].

Generalized to linear congruences, like f5k+2 ≡ 2f5k+1 mod 5
or f11k+7 + 2f11n+3 ≡ 3f11k+4 mod 11 [Garvan, 2014].

Open problem

Does any of the congruence properties of fn have a combinatorial
explanation?



Part III

The Catalan Connection



Dyck Paths and Their Statistics

ret(D) . . . number of returns of D (i.e., down-steps reaching
the x-axis)

tail(D) . . . number of down steps following the last up-step.

Theorem (Kreweras, 1970; Vaillé, 1997)

The statistics ret and tail have symmetric joint distribution on the
set of Dyck paths of a given length.



Dyck Paths and Their Statistics

ret = 2

ret(D) . . . number of returns of D (i.e., down-steps reaching
the x-axis)

tail(D) . . . number of down steps following the last up-step.

Theorem (Kreweras, 1970; Vaillé, 1997)
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The Catalan–Fishburn Connection

Theorem (Kim–Roush, 1978; Disanto–Ferrari–Pinzani–Rinaldi,
2010)

The (2+2,N)-free posets of size n, as well as the (2+2,3+1)-free
posets of size n are counted by Catalan numbers.

3+1 N



Catalan Classes of Fishburn Matrices

Definition

Let M = (mij) be a Fishburn matrix.

NE-pair . . . a pair of nonzero cells mij and mi ′j ′ such that
i > i ′ and j < j ′.

SE-pair . . . a pair of nonzero cells mij and mi ′j ′ such that
i < i ′, j < j ′ and i ′ ≤ j .
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Let M = (mij) be a Fishburn matrix.

NE-pair . . . a pair of nonzero cells mij and mi ′j ′ such that
i > i ′ and j < j ′.

SE-pair . . . a pair of nonzero cells mij and mi ′j ′ such that
i < i ′, j < j ′ and i ′ ≤ j .

Definition

A Fishburn matrix is NE-free (or SE-free) if it has no NE-pair (or
SE-pair, respectively).
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NE-pair . . . a pair of nonzero cells mij and mi ′j ′ such that
i > i ′ and j < j ′.
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i < i ′, j < j ′ and i ′ ≤ j .

Definition

A Fishburn matrix is NE-free (or SE-free) if it has no NE-pair (or
SE-pair, respectively).

Theorem (Dukes–J.–Kubitzke, 2011; J., 2015)

(2+2,N)-free posets correspond to SE-free Fishburn matrices,
(2+2,3+1)-free posets correspond to NE-free Fishburn matrices.



Statistics of Fishburn Matrices

Definition

Let M = (mij) be a k × k Fishburn matrix.

NE-extreme . . . a nonzero cell mij such that all the other cells
in rows 1, . . . , i and columns j , . . . , k are zeros.

SE-extreme . . . a nonzero diagonal cell mii such that all the
other cells in row i are zeros.

ne(M), se(M), lc(M) . . . number of NE-extreme cells, number
of SE-extreme cells, weight of the last column of M,
respectively.
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Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution on
SE-free Fishburn matrices.



Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution on
SE-free Fishburn matrices.



Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution on
SE-free Fishburn matrices.



Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

a

c

d

e f

b

g

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution on
SE-free Fishburn matrices.



Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

2
1 1
1
2

a

c

d

e f

b

g

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution on
SE-free Fishburn matrices.



Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

2
1 1
1
2

a

c

d

e f

b

g

ret = 2 = ne
tail = 3 = lc

1

2

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution on
SE-free Fishburn matrices.



Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

2
1 1
1
2

a

c

d

e f

b

g

ret = 2 = ne
tail = 3 = lc

1

2

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution on
SE-free Fishburn matrices.



Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

2
1 1
1
2

a

c

d

e f

b

g

ret = 2 = ne
tail = 3 = lc

1

2

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution on
SE-free Fishburn matrices.



Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution on
NE-free Fishburn matrices.



Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution on
NE-free Fishburn matrices.



Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

e

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution on
NE-free Fishburn matrices.



Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

e
a

c
d

e
f

b

g

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution on
NE-free Fishburn matrices.



Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

e
a

c
d

e
f

b

g

2
1 1

1
2

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution on
NE-free Fishburn matrices.



Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

e
a

c
d

e
f

b

g

2
1 1

1
2
1
2

ret = 2 = se
tail = 3 = lc

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution on
NE-free Fishburn matrices.



Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

e
a

c
d

e
f

b

g

2
1 1

1
2
1
2

ret = 2 = se
tail = 3 = lc

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution on
NE-free Fishburn matrices.



Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

e
a

c
d

e
f

b

g

2
1 1

1
2
1
2

ret = 2 = se
tail = 3 = lc

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn
matrices. A path D of length 2n maps to a matrix M of weigth n
with ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution on
NE-free Fishburn matrices.



Summary

Fishburn matrices

NE-free SE-free

se↔lc ne↔lc



Summary

Fishburn matrices

NE-free SE-free

se↔lc ne↔lc

se↔ne↔ ↔

lc



Symmetries of Fishburn Objects

Theorem (J., 2015)

For every n, the two statistics ne(·) and se(·) have symmetric joint
distribution on Fishburn matrices of weight n. This is witnessed by
an involution that preserves the value of lc(·).

Theorem (J., 2015)

For every n, the two statistics ne(·) and lc(·) have symmetric joint
distribution on Fishburn matrices of weight n.

2
3

1
2
1

1 1

1

1
1

1

1 2
1

2
2

1 1 1
1
2

1 1
2

1 1

2
1

2

2
1
2

1

1

1

1

1

1
1

1
1

1

ne=3, lc=2, weight=5

ne=2, lc=3, weight=5



Symmetries of Fishburn Objects

Theorem (J., 2015)

For every n, the two statistics ne(·) and se(·) have symmetric joint
distribution on Fishburn matrices of weight n. This is witnessed by
an involution that preserves the value of lc(·).

Theorem (J., 2015)

For every n, the two statistics ne(·) and lc(·) have symmetric joint
distribution on Fishburn matrices of weight n.

Open problem

Prove the second theorem bijectively.
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avoiding , which transforms the statistics as follows:
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Open Problem: Typical Properties of Fishburn Objects

Open problem

What does a uniformly random interval order (or Fishburn matrix)
of large size look like? Can you generate it efficiently?

Theorem (Drmota, 2011; Brightwell–Keller, 2011)

The probability that a random Fishburn matrix of weight n is
primitive tends to e−π

2/6 ∼ 0.193 as n→∞.
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The End

Thank you for your attention!
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