On Fishburn Numbers

Permutation Patterns, 29. 6. 2017

Vít Jelínek Computer Science Institute, Charles University in Prague

The Plan

- Fishburn-enumerated objects
- Generating functions, asymptotics, congruences
- The Catalan connection

Part I

 $Fishburn\hbox{-}Enumerated \ Objects$

Definition (Fishburn, 1970)

A partially ordered set (\mathcal{P}, \prec) is an interval order if we can assign to every $x \in \mathcal{P}$ a (closed, bounded) interval I_x , such that the following holds:

$$x \prec y \iff \max(I_x) < \min(I_y).$$

The multiset $\{I_x; x \in \mathcal{P}\}$ is an interval representation of \mathcal{P} .

Definition (Fishburn, 1970)

A partially ordered set (\mathcal{P}, \prec) is an interval order if we can assign to every $x \in \mathcal{P}$ a (closed, bounded) interval I_x , such that the following holds:

$$x \prec y \iff \max(I_x) < \min(I_y).$$

The multiset $\{I_x; x \in \mathcal{P}\}$ is an interval representation of \mathcal{P} .

Definition (Fishburn, 1970)

A partially ordered set (\mathcal{P}, \prec) is an interval order if we can assign to every $x \in \mathcal{P}$ a (closed, bounded) interval I_x , such that the following holds:

$$x \prec y \iff \max(I_x) < \min(I_y).$$

The multiset $\{I_x; x \in \mathcal{P}\}$ is an interval representation of \mathcal{P} .

not an interval order:

Definition (Fishburn; 1970)

A partially ordered set (\mathcal{P}, \prec) is an interval order if we can assign to every $x \in \mathcal{P}$ a (closed, bounded) interval I_x , such that the following holds:

$$x \prec y \iff \max(I_x) < \min(I_y).$$

The multiset $\{I_x; x \in \mathcal{P}\}$ is an interval representation of \mathcal{P} .

Theorem (Fishburn)

A poset is an interval order iff it avoids 2+2 as induced subposet.

Definition

Let f_n be the number of (unlabeled) interval orders with n elements. These are known as Fishburn numbers (A022493).

Definition (Fishburn; 1970)

A partially ordered set (\mathcal{P}, \prec) is an interval order if we can assign to every $x \in \mathcal{P}$ a (closed, bounded) interval I_x , such that the following holds:

$$x \prec y \iff \max(I_x) < \min(I_y).$$

The multiset $\{I_x; x \in \mathcal{P}\}$ is an interval representation of \mathcal{P} .

Theorem (Fishburn)

A poset is an interval order iff it avoids 2+2 as induced subposet.

Definition

Let f_n be the number of (unlabeled) interval orders with n elements. These are known as Fishburn numbers (A022493).

Fishburn Matrices

Definition

A Fishburn matrix is a square matrix $M=(m_{i,j})_{i,j=1}^d$ of nonegative integers such that

- M is upper-triangular (i.e., $m_{i,j} = 0$ whenever i > j), and
- ullet every row and every column of M has a nonzero entry.

Fishburn Matrices

Definition

A Fishburn matrix is a square matrix $M=(m_{i,j})_{i,j=1}^d$ of nonegative integers such that

- M is upper-triangular (i.e., $m_{i,j} = 0$ whenever i > j), and
- ullet every row and every column of M has a nonzero entry.

The weight of a matrix is the sum of its entries.

Fishburn Matrices

Definition

A Fishburn matrix is a square matrix $M=(m_{i,j})_{i,j=1}^d$ of nonegative integers such that

- M is upper-triangular (i.e., $m_{i,j} = 0$ whenever i > j), and
- ullet every row and every column of M has a nonzero entry.

The weight of a matrix is the sum of its entries.

A matrix is primitive if all its entries are 0 or 1.

From Matrices to Interval Orders

Theorem (Fishburn, 1970's; Dukes–Parviainen, 2010)

There are f_n Fishburn matrices of weight n.

From Matrices to Interval Orders

Theorem (Fishburn, 1970's; Dukes–Parviainen, 2010)

There are f_n Fishburn matrices of weight n.

From Matrices to Interval Orders

Theorem (Fishburn, 1970's; Dukes–Parviainen, 2010)

There are f_n Fishburn matrices of weight n.

$\mathsf{Theorem}$

Fishburn matrices of weight n, with first row of weight k and last column of weight ℓ correspond to interval orders of size n, with k minimal and ℓ maximal elements.

More Fishburn Objects: Avoiders of Vincular Patterns

$$P: \quad \bullet \quad = \quad \bullet$$

$$Q: \quad \bullet \quad = \quad \bullet$$

Theorem (Bousquet-Mélou–Claesson–Dukes–Kitaev, 2009; Parviainen, 2009)

$$|Av_n(P)| = |Av_n(Q)| = f_n.$$

Part II

Generating Functions, Asymptotics, Congruences

The Generating Function

Notation

For $n \ge 0$, the notation $(a; q)_n$ denotes the product $(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1})$.

Theorem (Zagier, 2001; Bousquet-Mélou et al., 2009)

$$\sum_{n=1}^{\infty} f_n x^n = \sum_{k=1}^{\infty} \prod_{j=1}^k \left(1 - (1-x)^j \right) = \sum_{k=1}^{\infty} \left(1 - x; 1 - x \right)_k.$$

The Generating Function

Notation

For $n \ge 0$, the notation $(a; q)_n$ denotes the product $(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1})$.

Theorem (Zagier, 2001; Bousquet-Mélou et al., 2009)

$$\sum_{n=1}^{\infty} f_n x^n = \sum_{k=1}^{\infty} \prod_{j=1}^k \left(1 - (1-x)^j \right) = \sum_{k=1}^{\infty} \left(1 - x; 1-x \right)_k.$$

- recall: f_n ... number of Fishburn matrices of weight n
- $f_{k,\ell}$... number of Fishburn matrices of weight $k+\ell$, with last column of weight ℓ ($k \ge 0$, $\ell \ge 1$)
- $F(x,y) = \sum_{k,\ell} f_{k,\ell} x^k y^\ell$ (hence $F(x,x) = \sum_{n \ge 1} f_n x^n$)
- $p_{k,\ell}$... number of primitive Fishburn matrices of weight $k + \ell$, with last column of weight ℓ
- $P(x,y) = \sum_{k,\ell} p_{k,\ell} x^k y^k$

- recall: f_n ... number of Fishburn matrices of weight n
- $f_{k,\ell}$... number of Fishburn matrices of weight $k+\ell$, with last column of weight ℓ ($k \ge 0$, $\ell \ge 1$)
- $F(x,y) = \sum_{k,\ell} f_{k,\ell} x^k y^\ell$ (hence $F(x,x) = \sum_{n \ge 1} f_n x^n$)
- $p_{k,\ell}$... number of primitive Fishburn matrices of weight $k + \ell$, with last column of weight ℓ
- $P(x,y) = \sum_{k,\ell} p_{k,\ell} x^k y^{\ell}$

- recall: f_n ... number of Fishburn matrices of weight n
- $f_{k,\ell}$... number of Fishburn matrices of weight $k + \ell$, with last column of weight ℓ ($k \ge 0$, $\ell \ge 1$)
- $F(x,y) = \sum_{k,\ell} f_{k,\ell} x^k y^\ell$ (hence $F(x,x) = \sum_{n\geq 1} f_n x^n$)
- $p_{k,\ell}$... number of primitive Fishburn matrices of weight $k + \ell$, with last column of weight ℓ
- $P(x,y) = \sum_{k,\ell} p_{k,\ell} x^k y^{\ell}$

- recall: f_n ... number of Fishburn matrices of weight n
- $f_{k,\ell}$... number of Fishburn matrices of weight $k+\ell$, with last column of weight ℓ ($k \ge 0$, $\ell \ge 1$)
- $F(x,y) = \sum_{k,\ell} f_{k,\ell} x^k y^{\ell}$ (hence $F(x,x) = \sum_{n \ge 1} f_n x^n$)
- $p_{k,\ell}$... number of primitive Fishburn matrices of weight $k + \ell$, with last column of weight ℓ
- $P(x,y) = \sum_{k,\ell} p_{k,\ell} x^k y^{\ell}$

- recall: f_n ... number of Fishburn matrices of weight n
- $f_{k,\ell}$... number of Fishburn matrices of weight $k+\ell$, with last column of weight ℓ ($k \ge 0$, $\ell \ge 1$)
- $F(x,y) = \sum_{k,\ell} f_{k,\ell} x^k y^{\ell}$ (hence $F(x,x) = \sum_{n>1} f_n x^n$)
- $p_{k,\ell}$... number of primitive Fishburn matrices of weight $k + \ell$, with last column of weight ℓ
- $P(x,y) = \sum_{k,\ell} p_{k,\ell} x^k y^{\ell}$

- recall: f_n ... number of Fishburn matrices of weight n
- $f_{k,\ell}$... number of Fishburn matrices of weight $k+\ell$, with last column of weight ℓ ($k \ge 0$, $\ell \ge 1$)
- $F(x,y) = \sum_{k,\ell} f_{k,\ell} x^k y^\ell$ (hence $F(x,x) = \sum_{n\geq 1} f_n x^n$)
- $p_{k,\ell}$... number of primitive Fishburn matrices of weight $k + \ell$, with last column of weight ℓ
- $P(x,y) = \sum_{k,\ell} p_{k,\ell} x^k y^{\ell}$

Observation

$$F(x,y) = P(\frac{x}{1-x}, \frac{y}{1-y}).$$

• Goal: show that $P(x,y) = \sum_{n=1}^{\infty} \left(\frac{1}{1+y}; \frac{1}{1+x}\right)_n$ and therefore $F(x,y) = \sum_{n=1}^{\infty} (1-y; 1-x)_n$ and $F(x,x) = \sum_{n=1}^{\infty} (1-x; 1-x)_n$.

- recall: f_n ... number of Fishburn matrices of weight n
- $f_{k,\ell}$... number of Fishburn matrices of weight $k+\ell$, with last column of weight ℓ ($k \ge 0$, $\ell \ge 1$)
- $F(x,y) = \sum_{k,\ell} f_{k,\ell} x^k y^\ell$ (hence $F(x,x) = \sum_{n\geq 1} f_n x^n$)
- $p_{k,\ell}$... number of primitive Fishburn matrices of weight $k + \ell$, with last column of weight ℓ
- $P(x,y) = \sum_{k,\ell} p_{k,\ell} x^k y^{\ell}$

Observation

$$F(x,y) = P(\frac{x}{1-x}, \frac{y}{1-y}).$$

• Goal: show that $P(x,y) = \sum_{n=1}^{\infty} \left(\frac{1}{1+y}; \frac{1}{1+x}\right)_n$ and therefore $F(x,y) = \sum_{n=1}^{\infty} (1-y; 1-x)_n$ and $F(x,x) = \sum_{n=1}^{\infty} (1-x; 1-x)_n$.

1				
	1		1	1
		1		
				1
				1

- $3^3 = 27$ possibilities, 1 of them is 'bad'.
- In terms of gen. functions: $x^k y^\ell \to y x^k (x + y + xy)^\ell y x^k y^\ell$.
- Hence: P(x, y) = y + yP(x, x + y + xy) yP(x, y)
- i.e., $P(x,y) = \left(1 \frac{1}{1+y}\right) + \left(1 \frac{1}{1+y}\right) P(x, x+y+xy).$

1						1						'moved'
	1		1	1			1		1		1	'moved' 1-entry
:	:	1				:		1				'copied' 1-entry
				1						1	1	▲ 1-entry
				1						1		'ignored' 1-entry
					•						1	1-entry

- $3^3 = 27$ possibilities, 1 of them is 'bad'.
- In terms of gen. functions: $x^k y^\ell \to y x^k (x + y + xy)^\ell y x^k y^\ell$.
- Hence: P(x, y) = y + yP(x, x + y + xy) yP(x, y)

• i.e.,
$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x, x+y+xy)$$

1						1						'moved'
	1		1	1			1		1		1	'moved' 1-entry
		1						1				'copied' 1-entry
				1						1	1	▲ 1-entry
-				1						1		'ignored' 1-entry
					'						1	1-entry

- $3^3 = 27$ possibilities, 1 of them is 'bad'.
- In terms of gen. functions: $x^k y^\ell \to y x^k (x + y + xy)^\ell y x^k y^\ell$.
- Hence: P(x, y) = y + yP(x, x + y + xy) yP(x, y),

• i.e.,
$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x, x+y+xy).$$

1						1						'moved'
	1		1	1			1		1		1	'moved' 1-entry
:	:	1				:		1				'copied' 1-entry
				1						1	1	▲ 1-entry
				1						1		'ignored' 1-entry
					•						1	1-entry

- $3^3 = 27$ possibilities, 1 of them is 'bad'.
- In terms of gen. functions: $x^k y^\ell \to y x^k (x + y + xy)^\ell y x^k y^\ell$.
- Hence: P(x,y) = y + yP(x,x+y+xy) yP(x,y),
- i.e., $P(x,y) = \left(1 \frac{1}{1+y}\right) + \left(1 \frac{1}{1+y}\right)P(x,x+y+xy).$

Solving the Functional Equation

Recall:
$$P(x, y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x, x + y + xy)$$

Note: the substitution $y \mapsto x + y + xy$ is equivalent to $(1+y) \mapsto (1+y)(1+x)$.

$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right)P(x, x+y+xy)$$

Recall:
$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x,x+y+xy)$$

Note: the substitution $y \mapsto x + y + xy$ is equivalent to $(1+y) \mapsto (1+y)(1+x)$.

$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right)P(x,x+y+xy)$$

Recall:
$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x,x+y+xy)$$

Note: the substitution $y \mapsto x + y + xy$ is equivalent to $(1+y) \mapsto (1+y)(1+x)$.

$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right)P(x, x + y + xy)$$

Recall:
$$P(x, y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x, x + y + xy)$$

Note: the substitution $y \mapsto x + y + xy$ is equivalent to $(1+y) \mapsto (1+y)(1+x)$.

$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right)P(x,x+y+xy)$$

$$= \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right)\left(1 - \frac{1}{(1+y)(1+x)}\right) + \left(1 - \frac{1}{1+y}\right)\left(1 - \frac{1}{(1+y)(1+x)}\right)\left(1 - \frac{1}{(1+y)(1+x)^2}\right) + \cdots$$

Recall:
$$P(x, y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x, x + y + xy)$$

Note: the substitution $y \mapsto x + y + xy$ is equivalent to $(1+y) \mapsto (1+y)(1+x)$.

$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x,x+y+xy)$$

$$= \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) \left(1 - \frac{1}{(1+y)(1+x)}\right) +$$

$$+ \left(1 - \frac{1}{1+y}\right) \left(1 - \frac{1}{(1+y)(1+x)}\right) \left(1 - \frac{1}{(1+y)(1+x)^2}\right) + \cdots$$

$$= \sum_{n \ge 1} \left(\frac{1}{1+y}; \frac{1}{1+x}\right)_n.$$

Recall:
$$P(x, y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x, x + y + xy)$$

Note: the substitution $y \mapsto x + y + xy$ is equivalent to $(1+y) \mapsto (1+y)(1+x)$.

$$P(x,y) = \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) P(x,x+y+xy)$$

$$= \left(1 - \frac{1}{1+y}\right) + \left(1 - \frac{1}{1+y}\right) \left(1 - \frac{1}{(1+y)(1+x)}\right) +$$

$$+ \left(1 - \frac{1}{1+y}\right) \left(1 - \frac{1}{(1+y)(1+x)}\right) \left(1 - \frac{1}{(1+y)(1+x)^2}\right) + \cdots$$

$$= \sum_{n \ge 1} \left(\frac{1}{1+y}; \frac{1}{1+x}\right)_n.$$

Hence: $F(x,y) = \sum_{n \ge 1} (1-y; 1-x)_n$, and $F(x) = \sum_{n \ge 1} (1-x; 1-x)_n$.

Theorem (Zagier, 2001)

$$f_n = n! \left(\frac{6}{\pi^2}\right)^n \sqrt{n} \left(\alpha + O\left(\frac{1}{n}\right)\right)$$
 with $\alpha = \frac{12\sqrt{3}}{\pi^{5/2}} e^{\pi^2/12}$.

- \bullet Compute t_n for $n \lesssim 1000$ (easy, since we know the GF)
- ullet Observe $f_npprox c^n n!$ for a constant c. Wanted: the value of c
- Idea: define $r_n = \frac{m+1}{n\Gamma_0}$. I hen $\lim_{n\to\infty} r_n = c.$
- Problem: $r_{1000} = 0.60823163...$ is still far from
 - $\frac{9}{2} = 0.60792710$

Theorem (Zagier, 2001)

$$f_n = n! \left(\frac{6}{\pi^2}\right)^n \sqrt{n} \left(\alpha + O\left(\frac{1}{n}\right)\right)$$
 with $\alpha = \frac{12\sqrt{3}}{\pi^{5/2}} e^{\pi^2/12}$.

- Compute f_n for $n \lesssim 1000$ (easy, since we know the GF)
- Observe $f_n \approx c^n n!$ for a constant c. Wanted: the value of c.
- Idea: define $r_n = rac{f_{n+1}}{nf_n}$. Then $\lim_{n o \infty} r_n = c$.
- Problem: $r_{1000} = 0.60823163...$ is still far from $\frac{6}{\pi^2} = 0.60792710...$

Theorem (Zagier, 2001)

$$f_n = n! \left(\frac{6}{\pi^2}\right)^n \sqrt{n} \left(\alpha + O\left(\frac{1}{n}\right)\right)$$
 with $\alpha = \frac{12\sqrt{3}}{\pi^{5/2}} e^{\pi^2/12}$.

- Compute f_n for $n \lesssim 1000$ (easy, since we know the GF)
- Observe $f_n \approx c^n n!$ for a constant c. Wanted: the value of c.
- Idea: define $r_n = \frac{t_{n+1}}{nf_n}$. Then $\lim_{n \to \infty} r_n = c$.
- Problem: $r_{1000} = 0.60823163...$ is still far from $\frac{6}{\pi^2} = 0.60792710...$

Theorem (Zagier, 2001)

$$f_n = n! \left(\frac{6}{\pi^2}\right)^n \sqrt{n} \left(\alpha + O\left(\frac{1}{n}\right)\right)$$
 with $\alpha = \frac{12\sqrt{3}}{\pi^{5/2}} e^{\pi^2/12}$.

- Compute f_n for $n \lesssim 1000$ (easy, since we know the GF)
- Observe $f_n \approx c^n n!$ for a constant c. Wanted: the value of c.
- Idea: define $r_n = \frac{f_{n+1}}{nf_n}$. Then $\lim_{n\to\infty} r_n = c$.
- Problem: $r_{1000} = 0.60823163...$ is still far from $\frac{6}{\pi^2} = 0.60792710...$

Theorem (Zagier, 2001)

$$f_n = n! \left(\frac{6}{\pi^2}\right)^n \sqrt{n} \left(\alpha + O\left(\frac{1}{n}\right)\right)$$
 with $\alpha = \frac{12\sqrt{3}}{\pi^{5/2}} e^{\pi^2/12}$.

- Compute f_n for $n \lesssim 1000$ (easy, since we know the GF)
- Observe $f_n \approx c^n n!$ for a constant c. Wanted: the value of c.
- Idea: define $r_n = \frac{f_{n+1}}{nf_n}$. Then $\lim_{n \to \infty} r_n = c$.
- Problem: $r_{1000} = 0.60823163...$ is still far from $\frac{6}{\pi^2} = 0.60792710...$

- For a sequence $(a_n)_{n\in\mathbb{N}}$, let $\Delta(a_n)$ be the sequence $(a_{n+1}-a_n)_{n\in\mathbb{N}}$ ("the difference of (a_n) ").
- Observe: for fixed $d \in \mathbb{Z} \setminus \{0\}$, $\Delta(n^d) = dn^{d-1} + O(n^{d-2})$.
- Suppose $r_n = c + \frac{\alpha_1}{n} + \frac{\alpha_2}{n^2} + \cdots$ for some constants α_i
- Then $nr_n = cn + \alpha_1 + \frac{\alpha_2}{n} + \cdots$ and $\Delta(nr_n) = c + O(\frac{1}{n^2})$.
- More generally, for fixed $k \in \mathbb{N}$, $\Delta^{(k)}(n^k r_n/k!) = c + O(\frac{1}{n^{k+1}})$.
- Set k=100 and define $(t_n)_{n\in\mathbb{N}}=\Delta^{(k)}(n^kr_n/k!)$. Then $|t_{1000}-\frac{6}{\pi^2}|<10^{-180}$, suggesting that $\frac{6}{\pi^2}$ is the limit of t_n , and therefore also of r_n .

- For a sequence $(a_n)_{n\in\mathbb{N}}$, let $\Delta(a_n)$ be the sequence $(a_{n+1}-a_n)_{n\in\mathbb{N}}$ ("the difference of (a_n) ").
- Observe: for fixed $d \in \mathbb{Z} \setminus \{0\}$, $\Delta(n^d) = dn^{d-1} + O(n^{d-2})$.
- Suppose $r_n = c + \frac{\alpha_1}{n} + \frac{\alpha_2}{n^2} + \cdots$ for some constants α_i .
- Then $nr_n = cn + \alpha_1 + \frac{\alpha_2}{n} + \cdots$ and $\Delta(nr_n) = c + O(\frac{1}{n^2})$.
- More generally, for fixed $k \in \mathbb{N}$, $\Delta^{(k)}(n^k r_n/k!) = c + O(\frac{1}{n^{k+1}})$.
- Set k=100 and define $(t_n)_{n\in\mathbb{N}}=\Delta^{(k)}(n^kr_n/k!)$. Then $|t_{1000}-\frac{6}{\pi^2}|<10^{-180}$, suggesting that $\frac{6}{\pi^2}$ is the limit of t_n , and therefore also of r_n .

- For a sequence $(a_n)_{n\in\mathbb{N}}$, let $\Delta(a_n)$ be the sequence $(a_{n+1}-a_n)_{n\in\mathbb{N}}$ ("the difference of (a_n) ").
- Observe: for fixed $d \in \mathbb{Z} \setminus \{0\}$, $\Delta(n^d) = dn^{d-1} + O(n^{d-2})$.
- Suppose $r_n = c + \frac{\alpha_1}{n} + \frac{\alpha_2}{n^2} + \cdots$ for some constants α_i .
- Then $nr_n = cn + \alpha_1 + \frac{\alpha_2}{n} + \cdots$ and $\Delta(nr_n) = c + O(\frac{1}{n^2})$.
- More generally, for fixed $k \in \mathbb{N}$, $\Delta^{(k)}(n^k r_n/k!) = c + O(\frac{1}{n^{k+1}})$.
- Set k=100 and define $(t_n)_{n\in\mathbb{N}}=\Delta^{(k)}(n^kr_n/k!)$. Then $|t_{1000}-\frac{6}{\pi^2}|<10^{-180}$, suggesting that $\frac{6}{\pi^2}$ is the limit of t_n , and therefore also of r_n .

- For a sequence $(a_n)_{n\in\mathbb{N}}$, let $\Delta(a_n)$ be the sequence $(a_{n+1}-a_n)_{n\in\mathbb{N}}$ ("the difference of (a_n) ").
- Observe: for fixed $d \in \mathbb{Z} \setminus \{0\}$, $\Delta(n^d) = dn^{d-1} + O(n^{d-2})$.
- Suppose $r_n = c + \frac{\alpha_1}{n} + \frac{\alpha_2}{n^2} + \cdots$ for some constants α_i .
- Then $nr_n = cn + \alpha_1 + \frac{\alpha_2}{n} + \cdots$ and $\Delta(nr_n) = c + O(\frac{1}{n^2})$.
- More generally, for fixed $k \in \mathbb{N}$, $\Delta^{(k)}(n^k r_n/k!) = c + O(\frac{1}{n^{k+1}})$.
- Set k=100 and define $(t_n)_{n\in\mathbb{N}}=\Delta^{(k)}(n^kr_n/k!)$. Then $|t_{1000}-\frac{6}{\pi^2}|<10^{-180}$, suggesting that $\frac{6}{\pi^2}$ is the limit of t_n , and therefore also of r_n .

- For a sequence $(a_n)_{n\in\mathbb{N}}$, let $\Delta(a_n)$ be the sequence $(a_{n+1}-a_n)_{n\in\mathbb{N}}$ ("the difference of (a_n) ").
- Observe: for fixed $d \in \mathbb{Z} \setminus \{0\}$, $\Delta(n^d) = dn^{d-1} + O(n^{d-2})$.
- Suppose $r_n = c + \frac{\alpha_1}{n} + \frac{\alpha_2}{n^2} + \cdots$ for some constants α_i .
- Then $nr_n = cn + \alpha_1 + \frac{\alpha_2}{n} + \cdots$ and $\Delta(nr_n) = c + O(\frac{1}{n^2})$.
- More generally, for fixed $k \in \mathbb{N}$, $\Delta^{(k)}(n^k r_n/k!) = c + O(\frac{1}{n^{k+1}})$.
- Set k=100 and define $(t_n)_{n\in\mathbb{N}}=\Delta^{(k)}(n^kr_n/k!)$. Then $|t_{1000}-\frac{6}{\pi^2}|<10^{-180}$, suggesting that $\frac{6}{\pi^2}$ is the limit of t_n , and therefore also of r_n .

- For a sequence $(a_n)_{n\in\mathbb{N}}$, let $\Delta(a_n)$ be the sequence $(a_{n+1}-a_n)_{n\in\mathbb{N}}$ ("the difference of (a_n) ").
- Observe: for fixed $d \in \mathbb{Z} \setminus \{0\}$, $\Delta(n^d) = dn^{d-1} + O(n^{d-2})$.
- Suppose $r_n = c + \frac{\alpha_1}{n} + \frac{\alpha_2}{n^2} + \cdots$ for some constants α_i .
- Then $nr_n = cn + \alpha_1 + \frac{\alpha_2}{n} + \cdots$ and $\Delta(nr_n) = c + O(\frac{1}{n^2})$.
- More generally, for fixed $k \in \mathbb{N}$, $\Delta^{(k)}(n^k r_n/k!) = c + O(\frac{1}{n^{k+1}})$.
- Set k=100 and define $(t_n)_{n\in\mathbb{N}}=\Delta^{(k)}(n^kr_n/k!)$. Then $|t_{1000}-\frac{6}{\pi^2}|<10^{-180}$, suggesting that $\frac{6}{\pi^2}$ is the limit of t_n , and therefore also of r_n .

• Sequence of $f_n \mod 5$, for $n = 0, \dots, 99$:

```
1, 1, 2, 0, 0, 3, 2, 4, 0, 0, 3, 4, 3, 0, 0, 0, 2, 4, 0, 0, 3, 1, 2, 0, 0, \\ 2, 1, 2, 0, 0, 4, 3, 1, 0, 0, 0, 3, 1, 0, 0, 2, 2, 4, 0, 0, 0, 3, 1, 0, 0, \\ 1, 4, 3, 0, 0, 1, 1, 2, 0, 0, 0, 3, 1, 0, 0, 0, 3, 1, 0, 0, 3, 2, 4, 0, 0, \\ 4, 0, 0, 0, 0, 3, 2, 4, 0, 0, 3, 1, 2, 0, 0, 4, 4, 3, 0, 0, 3, 4, 3, 0, 0
```

- ullet apparently, $t_{5k+3} \equiv t_{5k+4} \equiv 0$ and $t_{5k+2} \equiv 2t_{5k+1} \mod 5$.
- Sequence of $f_n \mod 7$, for $n = 0, \ldots, 99$:

```
1, 1, 2, 5, 1, 4, 0, 6, 1, 6, 1, 3, 5, 0, 0, 1, 1, 6, 4, 2, 0, 0, 3, 4, 3, \\2, 1, 0, 0, 6, 0, 0, 0, 0, 1, 4, 5, 2, 6, 3, 0, 0, 6, 5, 2, 6, 3, 0, 1, \\0, 0, 0, 0, 0, 0, 2, 1, 6, 4, 2, 0, 4, 4, 2, 5, 1, 4, 0, 0, 1, 5, 2, 6, \\3, 0, 1, 3, 0, 0, 0, 0, 1, 5, 2, 5, 1, 4, 0, 6, 0, 3, 4, 5, 6, 0, 1, 5
```

ullet apparently, $f_{7k+6}\equiv 0$ and $f_{7k+2}+f_{7k+3}\equiv 0 \mod 7$

• Sequence of $f_n \mod 5$, for $n = 0, \ldots, 99$:

```
1,1,2,0,0,3,2,4,0,0,3,4,3,0,0,0,2,4,0,0,3,1,2,0,0,\\2,1,2,0,0,4,3,1,0,0,0,3,1,0,0,2,2,4,0,0,0,3,1,0,0,\\1,4,3,0,0,1,1,2,0,0,0,3,1,0,0,0,3,1,0,0,3,2,4,0,0,\\4,0,0,0,0,3,2,4,0,0,3,1,2,0,0,4,4,3,0,0,3,4,3,0,0
```

- apparently, $f_{5k+3} \equiv f_{5k+4} \equiv 0$ and $f_{5k+2} \equiv 2f_{5k+1} \mod 5$.
- Sequence of $f_n \mod 7$, for $n = 0, \ldots, 99$:

```
1, 1, 2, 5, 1, 4, 0, 6, 1, 6, 1, 3, 5, 0, 0, 1, 1, 6, 4, 2, 0, 0, 3, 4, 3, 2, 1, 0, 0, 6, 0, 0, 0, 0, 1, 4, 5, 2, 6, 3, 0, 0, 6, 5, 2, 6, 3, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 6, 4, 2, 0, 4, 4, 2, 5, 1, 4, 0, 0, 1, 5, 2, 6, 3, 0, 1, 3, 0, 0, 0, 0, 0, 1, 5, 2, 5, 1, 4, 0, 6, 0, 3, 4, 5, 6, 0, 1, 5
```

• apparently, $f_{7k+6} \equiv 0$ and $f_{7k+2} + f_{7k+3} \equiv 0 \mod 7$.

• Sequence of $f_n \mod 5$, for $n = 0, \ldots, 99$:

```
1,1,2,0,0,3,2,4,0,0,3,4,3,0,0,2,2,4,0,0,3,1,2,0,0,\\2,1,2,0,0,4,3,1,0,0,0,3,1,0,0,2,2,4,0,0,0,3,1,0,0,\\1,4,3,0,0,1,1,2,0,0,0,3,1,0,0,0,3,1,0,0,3,2,4,0,0,\\4,0,0,0,0,3,2,4,0,0,3,1,2,0,0,4,4,3,0,0,3,4,3,0,0
```

- apparently, $f_{5k+3} \equiv f_{5k+4} \equiv 0$ and $f_{5k+2} \equiv 2f_{5k+1} \mod 5$.
- Sequence of $f_n \mod 7$, for $n = 0, \ldots, 99$:

```
1,1,2,5,1,4,0,6,1,6,1,3,5,0,0,1,1,6,4,2,0,0,3,4,3,\\2,1,0,0,6,0,0,0,0,1,4,5,2,6,3,0,0,6,5,2,6,3,0,1,\\0,0,0,0,0,0,2,1,6,4,2,0,4,4,2,5,1,4,0,0,1,5,2,6,\\3,0,1,3,0,0,0,0,1,5,2,5,1,4,0,6,0,3,4,5,6,0,1,5
```

• apparently, $f_{7k+6} \equiv 0$ and $f_{7k+2} + f_{7k+3} \equiv 0 \mod 7$.

• Sequence of $f_n \mod 5$, for $n = 0, \dots, 99$:

```
1,1,2,0,0,3,2,4,0,0,3,4,3,0,0,0,2,4,0,0,3,1,2,0,0,\\2,1,2,0,0,4,3,1,0,0,0,3,1,0,0,2,2,4,0,0,0,3,1,0,0,\\1,4,3,0,0,1,1,2,0,0,0,3,1,0,0,0,3,1,0,0,3,2,4,0,0,\\4,0,0,0,0,3,2,4,0,0,3,1,2,0,0,4,4,3,0,0,3,4,3,0,0
```

- apparently, $f_{5k+3} \equiv f_{5k+4} \equiv 0$ and $f_{5k+2} \equiv 2f_{5k+1} \mod 5$.
- Sequence of $f_n \mod 7$, for $n = 0, \ldots, 99$:

```
1, 1, 2, 5, 1, 4, 0, 6, 1, 6, 1, 3, 5, 0, 0, 1, 1, 6, 4, 2, 0, 0, 3, 4, 3, \\2, 1, 0, 0, 6, 0, 0, 0, 0, 1, 4, 5, 2, 6, 3, 0, 0, 6, 5, 2, 6, 3, 0, 1, \\0, 0, 0, 0, 0, 0, 2, 1, 6, 4, 2, 0, 4, 4, 2, 5, 1, 4, 0, 0, 1, 5, 2, 6, \\3, 0, 1, 3, 0, 0, 0, 0, 1, 5, 2, 5, 1, 4, 0, 6, 0, 3, 4, 5, 6, 0, 1, 5
```

• apparently, $f_{7k+6} \equiv 0$ and $f_{7k+2} + f_{7k+3} \equiv 0 \mod 7$.

Theorem (Andrews-Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a $i \ge 1$ such that for every $k \ge 1$, we have

$$f_{pk-1} \equiv f_{pk-2} \equiv \cdots \equiv f_{pk-i} \equiv 0 \mod p.$$

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a $i \ge 1$ such that for every $k \ge 1$, we have

$$f_{pk-1} \equiv f_{pk-2} \equiv \cdots \equiv f_{pk-i} \equiv 0 \mod p.$$

- Generalized to congruences modulo prime powers [Straub, 2014].
- Generalized to linear congruences, like $f_{5k+2} \equiv 2f_{5k+1} \mod 5$ or $f_{11k+7} + 2f_{11n+3} \equiv 3f_{11k+4} \mod 11$ [Garvan, 2014].

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a $i \ge 1$ such that for every $k \ge 1$, we have

$$f_{pk-1} \equiv f_{pk-2} \equiv \cdots \equiv f_{pk-i} \equiv 0 \mod p.$$

- Generalized to congruences modulo prime powers [Straub, 2014].
- Generalized to linear congruences, like $f_{5k+2} \equiv 2f_{5k+1} \mod 5$ or $f_{11k+7} + 2f_{11n+3} \equiv 3f_{11k+4} \mod 11$ [Garvan, 2014].

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is a $i \ge 1$ such that for every $k \ge 1$, we have

$$f_{pk-1} \equiv f_{pk-2} \equiv \cdots \equiv f_{pk-i} \equiv 0 \mod p.$$

- Generalized to congruences modulo prime powers [Straub, 2014].
- Generalized to linear congruences, like $f_{5k+2} \equiv 2f_{5k+1} \mod 5$ or $f_{11k+7} + 2f_{11n+3} \equiv 3f_{11k+4} \mod 11$ [Garvan, 2014].

Open problem

Does any of the congruence properties of f_n have a combinatorial explanation?

Part III

The Catalan Connection

 ret(D) . . . number of returns of D (i.e., down-steps reaching the x-axis)

ullet tail(D) . . . number of down steps following the last up-step.

- ret(D) ... number of returns of D (i.e., down-steps reaching the x-axis)
- tail(D) ... number of down steps following the last up-step.

- ret(D) ... number of returns of D (i.e., down-steps reaching the x-axis)
- tail(D) ... number of down steps following the last up-step.

- ret(D) ... number of returns of D (i.e., down-steps reaching the x-axis)
- tail(D) ... number of down steps following the last up-step.

Theorem (Kreweras, 1970; Vaillé, 1997)

The statistics ret and tail have symmetric joint distribution on the set of Dyck paths of a given length.

The Catalan–Fishburn Connection

Theorem (Kim-Roush, 1978; Disanto-Ferrari-Pinzani-Rinaldi, 2010)

The (2+2,N)-free posets of size n, as well as the (2+2,3+1)-free posets of size n are counted by Catalan numbers.

Catalan Classes of Fishburn Matrices

Definition

Let $M = (m_{ij})$ be a Fishburn matrix.

- NE-pair ... a pair of nonzero cells m_{ij} and $m_{i'j'}$ such that i > i' and j < j'.
- SE-pair ... a pair of nonzero cells m_{ij} and $m_{i'j'}$ such that i < i', j < j' and $i' \le j$.

Catalan Classes of Fishburn Matrices

Definition

Let $M = (m_{ij})$ be a Fishburn matrix.

- NE-pair ... a pair of nonzero cells m_{ij} and $m_{i'j'}$ such that i > i' and j < j'.
- SE-pair ... a pair of nonzero cells m_{ij} and $m_{i'j'}$ such that i < i', j < j' and $i' \le j$.

Definition

A Fishburn matrix is NE-free (or SE-free) if it has no NE-pair (or SE-pair, respectively).

Catalan Classes of Fishburn Matrices

Definition

Let $M = (m_{ij})$ be a Fishburn matrix.

- NE-pair . . . a pair of nonzero cells m_{ij} and $m_{i'j'}$ such that i > i' and j < j'.
- SE-pair ... a pair of nonzero cells m_{ij} and $m_{i'j'}$ such that i < i', j < j' and $i' \le j$.

Definition

A Fishburn matrix is NE-free (or SE-free) if it has no NE-pair (or SE-pair, respectively).

Theorem (Dukes–J.–Kubitzke, 2011; J., 2015)

(2+2,N)-free posets correspond to SE-free Fishburn matrices, (2+2,3+1)-free posets correspond to NE-free Fishburn matrices.

Statistics of Fishburn Matrices

Definition

Let $M = (m_{ij})$ be a $k \times k$ Fishburn matrix.

- NE-extreme . . . a nonzero cell m_{ii} such that all the other cells in rows $1, \ldots, i$ and columns j, \ldots, k are zeros.

NF-extremes

Statistics of Fishburn Matrices

Definition

Let $M = (m_{ij})$ be a $k \times k$ Fishburn matrix.

- NE-extreme . . . a nonzero cell m_{ii} such that all the other cells in rows $1, \ldots, i$ and columns j, \ldots, k are zeros.
- SE-extreme ... a nonzero diagonal cell m_{ii} such that all the other cells in row i are zeros.

2		1			
	1				
			4		
			1	3	
				2	
NF-extremes					

SF-extremes

Statistics of Fishburn Matrices

Definition

Let $M = (m_{ij})$ be a $k \times k$ Fishburn matrix.

- NE-extreme ... a nonzero cell m_{ij} such that all the other cells in rows 1, ..., i and columns j, ..., k are zeros.
- SE-extreme . . . a nonzero diagonal cell m_{ii} such that all the other cells in row i are zeros.
- ne(M), se(M), lc(M) ... number of NE-extreme cells, number of SE-extreme cells, weight of the last column of M, respectively.

2		1		
	1			
			4	
			1	3
				2

NE-extremes

SE-extremes

$\mathsf{Theorem}$

The above is a bijection from Dyck paths to SE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = ne(M) and tail(D) = lc(M).

In particular, $\operatorname{ne}(\cdot)$ and $\operatorname{lc}(\cdot)$ have symmetric joint distribution or SE-free Fishburn matrices.

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = ne(M) and tail(D) = lc(M).

In particular, $\operatorname{ne}(\cdot)$ and $\operatorname{lc}(\cdot)$ have symmetric joint distribution or SE-free Fishburn matrices.

$\mathsf{T}\mathsf{heorem}$

The above is a bijection from Dyck paths to SE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = ne(M) and tail(D) = lc(M).

$\mathsf{T}\mathsf{heorem}$

The above is a bijection from Dyck paths to SE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = ne(M) and tail(D) = lc(M).

$\mathsf{T}\mathsf{heorem}$

The above is a bijection from Dyck paths to SE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = ne(M) and tail(D) = lc(M).

$\mathsf{T}\mathsf{heorem}$

The above is a bijection from Dyck paths to SE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = ne(M) and tail(D) = lc(M).

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = ne(M) and tail(D) = lc(M).

Theorem

The above is a bijection from Dyck paths to SE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = ne(M) and tail(D) = lc(M).

$\mathsf{Theorem}$

The above is a bijection from Dyck paths to NE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = se(M) and tail(D) = lc(M).

$\mathsf{Theorem}$

The above is a bijection from Dyck paths to NE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = se(M) and tail(D) = lc(M).

$\mathsf{T}\mathsf{heorem}$

The above is a bijection from Dyck paths to NE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = se(M) and tail(D) = lc(M).

$\mathsf{T}\mathsf{heorem}$

The above is a bijection from Dyck paths to NE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = se(M) and tail(D) = lc(M).

$\mathsf{T}\mathsf{heorem}$

The above is a bijection from Dyck paths to NE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = se(M) and tail(D) = lc(M).

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = se(M) and tail(D) = lc(M).

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = se(M) and tail(D) = lc(M).

Theorem

The above is a bijection from Dyck paths to NE-free Fishburn matrices. A path D of length 2n maps to a matrix M of weigth n with ret(D) = se(M) and tail(D) = lc(M).

Summary

Summary

Symmetries of Fishburn Objects

Theorem (J., 2015)

For every n, the two statistics $ne(\cdot)$ and $se(\cdot)$ have symmetric joint distribution on Fishburn matrices of weight n. This is witnessed by an involution that preserves the value of $lc(\cdot)$.

Theorem (J., 2015)

For every n, the two statistics $ne(\cdot)$ and $lc(\cdot)$ have symmetric joint distribution on Fishburn matrices of weight n.

Symmetries of Fishburn Objects

Theorem (J., 2015)

For every n, the two statistics $ne(\cdot)$ and $se(\cdot)$ have symmetric joint distribution on Fishburn matrices of weight n. This is witnessed by an involution that preserves the value of $lc(\cdot)$.

Theorem (J., 2015)

For every n, the two statistics $ne(\cdot)$ and $lc(\cdot)$ have symmetric joint distribution on Fishburn matrices of weight n.

Open problem

Prove the second theorem bijectively.

Conjecture

There is a bijection between Fishburn matrices and permutations avoiding \dotplus , which transforms the statistics as follows:

Conjecture

There is a bijection between Fishburn matrices and permutations avoiding \dotplus , which transforms the statistics as follows:

Conjecture

There is a bijection between Fishburn matrices and permutations avoiding \dotplus , which transforms the statistics as follows:

Conjecture

There is a bijection between Fishburn matrices and permutations avoiding \dotplus , which transforms the statistics as follows:

Conjecture

There is a bijection between Fishburn matrices and permutations avoiding \dotplus , which transforms the statistics as follows:

Conjecture

There is a bijection between Fishburn matrices and permutations avoiding \dotplus , which transforms the statistics as follows:

Moreover, inverse permutation is mapped to the 'diagonal flip' of the matrix.

Conjecture

The statistics "number of RL-maxima" and "number of RL-minima" have symmetric joint distribution over \dotplus -avoiders of a given size.

Open Problem: Typical Properties of Fishburn Objects

Open problem

What does a uniformly random interval order (or Fishburn matrix) of large size look like? Can you generate it efficiently?

Theorem (Drmota, 2011; Brightwell–Keller, 2011

The probability that a random Fishburn matrix of weight n is primitive tends to $e^{-\pi^2/6} \sim 0.193$ as $n \to \infty$.

Open Problem: Typical Properties of Fishburn Objects

Open problem

What does a uniformly random interval order (or Fishburn matrix) of large size look like? Can you generate it efficiently?

Theorem (Drmota, 2011; Brightwell–Keller, 2011)

The probability that a random Fishburn matrix of weight n is primitive tends to $e^{-\pi^2/6}\sim 0.193$ as $n\to\infty$.

The End

Thank you for your attention!

References I

G. E. Andrews and J. A. Sellers.

Congruences for the Fishburn numbers.

Journal of Number Theory, 161:298-310, 2016.

G. Brightwell and M. T. Keller.

Asymptotic enumeration of labelled interval orders. arXiv:1111.6766, 2011.

M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev.

(2+2)-free posets, ascent sequences and pattern avoiding permutations. J. Comb. Theory Ser. A, 117(7):884–909, 2010.

F. Disanto, L. Ferrari, R. Pinzani, and S. Rinaldi.

Catalan pairs: A relational-theoretic approach to Catalan numbers. *Adv. Appl. Math.*, 45(4):505–517, 2010.

M. Dukes, V. Jelínek, and M. Kubitzke.

Composition matrices, (2+2)-free posets and their specializations. *Electronic J. Combin.*, 18(1)(P44), 2011.

M. Dukes and R. Parviainen.

Ascent sequences and upper triangular matrices containing non-negative integers. *Electronic J. Combin.*, 17(R53), 2010.

P. C. Fishburn.

Intransitive indifference with unequal indifference intervals.

Journal of Mathematical Psychology, 7(1):144–149, 1970.

P. C. Fishburn.

Interval orders and interval graphs: A study of partially ordered sets. John Wiley & Sons, 1985.

References II

F. G. Garvan.

Congruences and relations for r-Fishburn numbers. J. Comb. Theory A, 134:147-165, 2015.

V. Jelínek.

Counting general and self-dual interval orders. J. Comb. Theory A, 119(3):599-614, 2012.

V. Jelínek.

Catalan pairs and Fishburn triples.

Adv. Appl. Math., 70:1-31, 2015.

K H Kim and F W Roush

Enumeration of isomorphism classes of semiorders.

Journal of Combinatorics, Information & System Sciences, 3:58-61, 1978.

G Kreweras

Sur les éventails de segments.

Cahiers du Bureau universitaire de recherche opérationnelle. Série Recherche, 15:3-41, 1970.

R. Parviainen.

Wilf classification of bi-vincular permutation patterns.

arXiv:0910.5103, 2009.

A. Straub.

Congruences for Fishburn numbers modulo prime powers.

Int. J. Number Theory, 11(5):1679-1690, 2015.

J. Vaillé.

Une bijection explicative de plusieurs propriétés remarquables des ponts.

Europ. J. Combinatorics, 18:117-124, 1997.

References III

D. Zagier.

Vassiliev invariants and a strange identity related to the Dedekind eta-function. Topology, 40(5):945-960, 2001.