## Inversion Sequences and Generating Trees

#### A. Bindi V. Guerrini S. Rinaldi

University of Siena

#### Permutation Patterns 2017



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- An *inversion sequence* is an integer sequence e<sub>1</sub>...e<sub>n</sub> satisfying 0 ≤ e<sub>i</sub> < i for all i = 1,..., n.</li>
- Inversion sequences are naturally bijective to permutations:
   e = Θ(π) is obtained from a permutation π = π<sub>1</sub>...π

setting  $e_i = |\{j : j < i \text{ and } \pi_j > \pi_i\}|.$ 

- The study of patterns in inversion sequences was introduced in:
  - inversion sequences avoiding permutations of length 3 [T-Mansour, M. Shatuck 2015].
  - Inversion sequences that avoid words of length 3
     [6: Concell, M. A. Mantinez, C. D. Savage, M. Weselcouch 12(16)
- An inversion sequence avoids a pattern a₁ a₂ a₃ if there are not three indices i < j < k such that ei ej ek ≡ a₁ a₂ a₃.</li>

- An *inversion sequence* is an integer sequence e<sub>1</sub>...e<sub>n</sub> satisfying 0 ≤ e<sub>i</sub> < i for all i = 1,..., n.</li>
- Inversion sequences are naturally bijective to permutations:

- The study of patterns in inversion sequences was introduced in:
  - inversion sequences avoiding permutations of length 3 [1] Manager M. Stratturs 211 31
  - Inversion sequences that avoid words of length 3
     [S: Contest, M. A. Martinez, C. D. Savago, M. Weselcouch 2016]
- An inversion sequence avoids a pattern a₁ a₂ a₃ if there are not three indices i < j < k such that ei ej ek ≡ a₁ a₂ a₃.</li>

- An *inversion sequence* is an integer sequence e<sub>1</sub>...e<sub>n</sub> satisfying 0 ≤ e<sub>i</sub> < i for all i = 1,..., n.</li>
- Inversion sequences are naturally bijective to permutations:

- The study of patterns in inversion sequences was introduced in:
  - inversion sequences avoiding permutations of length 3 [T. Mansour, M. Shattuck 2015].
  - inversion sequences that avoid words of length 3
     [S. Corteel, M. A. Martinez, C. D. Savage, M. Weselcouch 2016]
- An inversion sequence avoids a pattern a₁ a₂ a₃ if there are not three indices i < j < k such that e; e; ek ≡ a₁ a₂ a₃.</li>
   (□) (∅) (Ξ) (Ξ) (Ξ) (Ξ) (Ξ)

- An *inversion sequence* is an integer sequence e<sub>1</sub>...e<sub>n</sub> satisfying 0 ≤ e<sub>i</sub> < i for all i = 1,..., n.</li>
- Inversion sequences are naturally bijective to permutations:

- The study of patterns in inversion sequences was introduced in:
  - inversion sequences avoiding permutations of length 3 [T. Mansour, M. Shattuck 2015].
  - inversion sequences that avoid words of length 3
     [S. Corteel, M. A. Martinez, C. D. Savage, M. Weselcouch 2016]
- An inversion sequence avoids a pattern a₁ a₂ a₃ if there are not three indices i < j < k such that e; e; ek ≡ a₁ a₂ a₃.</li>
   (□) (∅) (Ξ) (Ξ) (Ξ) (Ξ) (Ξ)

- An *inversion sequence* is an integer sequence e<sub>1</sub>...e<sub>n</sub> satisfying 0 ≤ e<sub>i</sub> < i for all i = 1,..., n.</li>
- Inversion sequences are naturally bijective to permutations:

- The study of patterns in inversion sequences was introduced in:
  - inversion sequences avoiding permutations of length 3 [T. Mansour, M. Shattuck 2015].
  - inversion sequences that avoid words of length 3
     [S. Corteel, M. A. Martinez, C. D. Savage, M. Weselcouch 2016]
- An inversion sequence avoids a pattern a₁ a₂ a₃ if there are not three indices i < j < k such that e<sub>i</sub> e<sub>j</sub> e<sub>k</sub> ≡ a₁ a₂ a₃.
   → (□) → (□) → (□) → (□) → (□)

- An *inversion sequence* is an integer sequence e<sub>1</sub>...e<sub>n</sub> satisfying 0 ≤ e<sub>i</sub> < i for all i = 1,..., n.</li>
- Inversion sequences are naturally bijective to permutations:

- The study of patterns in inversion sequences was introduced in:
  - inversion sequences avoiding permutations of length 3 [T. Mansour, M. Shattuck 2015].
  - inversion sequences that avoid words of length 3
     [S. Corteel, M. A. Martinez, C. D. Savage, M. Weselcouch 2016]
- An inversion sequence avoids a pattern a₁ a₂ a₃ if there are not three indices i < j < k such that ei ej ek ≡ a₁ a₂ a₃.</li>

#### Example

•  $I_n(110)$ : sequences with no i < j < k such that  $e_i = e_j > e_k$ .

• corresponds to the permutation  $\pi = 96103841752$ .



#### Example

•  $I_n(110)$ : sequences with no i < j < k such that  $e_i = e_j > e_k$ .

• corresponds to the permutation  $\pi = 96103841752$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### Example

*I<sub>n</sub>*(110): sequences with no *i* < *j* < *k* such that *e<sub>i</sub>* = *e<sub>j</sub>* > *e<sub>k</sub>*.



0 1 0 3 2 4 6 3 5 8

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• corresponds to the permutation  $\pi = 96103841752$ .

#### Example

*I<sub>n</sub>*(110): sequences with no *i* < *j* < *k* such that *e<sub>i</sub>* = *e<sub>j</sub>* > *e<sub>k</sub>*.



0 1 0 3 2 4 6 3 5 8

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• corresponds to the permutation  $\pi = 96103841752$ .

- Martinez and Savage generalized the notion of pattern avoidance to a triple of binary relations (*ρ*<sub>1</sub>, *ρ*<sub>2</sub>, *ρ*<sub>3</sub>), where *ρ<sub>i</sub>* ∈ {<,>,≤,≥,=,≠,−}, where − on a set *S* is the cartesian product, i.e. − = *S* × *S*.
- *I<sub>n</sub>*(*ρ*<sub>1</sub>, *ρ*<sub>2</sub>, *ρ*<sub>3</sub>) is the set of inversion sequences *e* of length *n* with no *i* < *j* < *k* such that

 $e_i \rho_1 e_j, e_j \rho_2 e_k, e_i \rho_3 e_k.$ 

- For example  $I_n(=, >, >) = I_n(110)$ .
- All triples of relations of the set {<,>, ≤, ≥, =, ≠, −}<sup>3</sup> are studied in [Martinez, Savage 2016].
- All 343 patterns are considered and partitioned in 98 equivalence classes. Several conjectures are formulated.

- Martinez and Savage generalized the notion of pattern avoidance to a triple of binary relations (ρ<sub>1</sub>, ρ<sub>2</sub>, ρ<sub>3</sub>), where ρ<sub>i</sub> ∈ {<,>,≤,≥,=,≠,−}, where − on a set S is the cartesian product, i.e. − = S × S.
- *I<sub>n</sub>*(*ρ*<sub>1</sub>, *ρ*<sub>2</sub>, *ρ*<sub>3</sub>) is the set of inversion sequences *e* of length *n* with no *i* < *j* < *k* such that

 $e_i \rho_1 e_j, e_j \rho_2 e_k, e_i \rho_3 e_k.$ 

- For example  $I_n(=, >, >) = I_n(110)$ .
- All triples of relations of the set {<, >, ≤, ≥, =, ≠, -}<sup>3</sup> are studied in [Martinez, Savage 2016].
- All 343 patterns are considered and partitioned in 98 equivalence classes. Several conjectures are formulated.

- Martinez and Savage generalized the notion of pattern avoidance to a triple of binary relations (*ρ*<sub>1</sub>, *ρ*<sub>2</sub>, *ρ*<sub>3</sub>), where *ρ<sub>i</sub>* ∈ {<,>,≤,≥,=,≠,−}, where − on a set *S* is the cartesian product, i.e. − = *S* × *S*.
- *I<sub>n</sub>*(*ρ*<sub>1</sub>, *ρ*<sub>2</sub>, *ρ*<sub>3</sub>) is the set of inversion sequences *e* of length *n* with no *i* < *j* < *k* such that

 $e_i \rho_1 e_j, e_j \rho_2 e_k, e_i \rho_3 e_k.$ 

- For example  $I_n(=, >, >) = I_n(110)$ .
- All triples of relations of the set {<, >, ≤, ≥, =, ≠, −}<sup>3</sup> are studied in [Martinez, Savage 2016].
- All 343 patterns are considered and partitioned in 98 equivalence classes. Several conjectures are formulated.

- Martinez and Savage generalized the notion of pattern avoidance to a triple of binary relations (*ρ*<sub>1</sub>, *ρ*<sub>2</sub>, *ρ*<sub>3</sub>), where *ρ<sub>i</sub>* ∈ {<,>,≤,≥,=,≠,−}, where − on a set *S* is the cartesian product, i.e. − = *S* × *S*.
- *I<sub>n</sub>*(*ρ*<sub>1</sub>, *ρ*<sub>2</sub>, *ρ*<sub>3</sub>) is the set of inversion sequences *e* of length *n* with no *i* < *j* < *k* such that

 $e_i \rho_1 e_j, e_j \rho_2 e_k, e_i \rho_3 e_k.$ 

- For example  $I_n(=, >, >) = I_n(110)$ .
- All triples of relations of the set {<,>,≤,≥,=,≠,-}<sup>3</sup> are studied in [Martinez, Savage 2016].
- All 343 patterns are considered and partitioned in 98 equivalence classes. Several conjectures are formulated.

- Martinez and Savage generalized the notion of pattern avoidance to a triple of binary relations (ρ<sub>1</sub>, ρ<sub>2</sub>, ρ<sub>3</sub>), where ρ<sub>i</sub> ∈ {<,>,≤,≥,=,≠,−}, where − on a set S is the cartesian product, i.e. − = S × S.
- *I<sub>n</sub>*(*ρ*<sub>1</sub>, *ρ*<sub>2</sub>, *ρ*<sub>3</sub>) is the set of inversion sequences *e* of length *n* with no *i* < *j* < *k* such that

 $e_i \rho_1 e_j, e_j \rho_2 e_k, e_i \rho_3 e_k.$ 

- For example  $I_n(=, >, >) = I_n(110)$ .
- All triples of relations of the set {<,>,≤,≥,=,≠,-}<sup>3</sup> are studied in [Martinez, Savage 2016].
- All 343 patterns are considered and partitioned in 98 equivalence classes. Several conjectures are formulated.

#### Inversion Sequences Avoiding Patterns of Length 3

| $e_i \neq e_j$ and $e_i \neq e_k$<br>$e_i \geq e_j$ and $e_i \neq e_k$ |         |            |                                                              |           | Sectio |
|------------------------------------------------------------------------|---------|------------|--------------------------------------------------------------|-----------|--------|
|                                                                        | A004275 | 765        | 2(n-1) for $n > 1$                                           | 12,A      | 2.2    |
|                                                                        | A004275 | YES        | 2(n-1) for $n > 1$                                           | 12.B      | 2.2    |
| $e_i = e_i \leq e_k$                                                   | A000045 | yes        | Fibonacci numbers, F <sub>n+1</sub>                          | 21        | 2.3    |
| $c_1 \leq c_1 \neq c_2$                                                | A000124 | ves        | Lazy caterer sequence                                        | 22.A      | 2.4    |
| $e_i < e_i$ and $e_i < e_k$                                            | A000124 | yes.       | Lazy caterer sequence                                        | 22.B      | 2.4    |
| $e_1 \ge e_1 \neq e_2$                                                 | A000124 | yes        | Lagy caterer sequence                                        | 22.C      | 2.4    |
| $e_1 \neq e_1 \leq e_k$                                                | A000071 | yes        | $F_{n+2} - 1$                                                | 33,A      | 2.5    |
| $e_1 \ge e_2 \le e_k$ and $e_1 \ne e_k$                                | A000071 | ves        | $F_{n+2} = 1$                                                | 33.B      | 2.5    |
| $e_1 = e_3 < e_k$                                                      | A000079 | 1008       | $I_n(001), 2^{n-1}$ (see [13])                               | 64.A      | 2.6    |
| ei < ei < ei                                                           | A000079 | yes.       | $2^{n-1}$                                                    | 64,B      | 2.6    |
| $e_1 < e_2 \ge e_k$                                                    | A000079 | YES        | $2^{n-1}$                                                    | 64.C      | 2.6    |
| $e_1 \le e_4 = e_k$                                                    | A000079 | 5'08       | 2 <sup>n-1</sup>                                             | 64,D      | 2.6    |
| $e_1 \neq e_1 \leq e_2$                                                | A000325 | Yes        | Grassmannian permutations                                    | 121.A     | 2.7    |
| $e_1 \neq e_2 \neq e_k$ and $e_1 \neq e_k$                             | A000325 | 5768       | Grassmannian permutations                                    | 121,B     | 2.7    |
| $e_i \ge e_b$ and $e_i \ne e_b$                                        | A000325 | ves        | Grassmannian permutations                                    | 121.C     | 2.7    |
| $e_i \neq e_i < e_k$ and $e_i \leq e_k$                                | A034943 | 5708       | 321-avoiding separable perms                                 | 151       | 2.8    |
| $e_1 \neq e_1 < e_k$ and $e_1 \neq e_k$                                | A088921 | ves        | S. (321, 2143)                                               | 185       | 2.9    |
| $\epsilon_1 \ge \epsilon_k$                                            | A049125 | по         | ordered trees, internal nodes adj. to $\leq 1$ lea           | 187       | 2.1    |
| $e_i \leq e_i \geq e_k$ and $e_i \neq e_k$                             | A005183 | yes.       | $S_n(132, 4312), n2^{n-1} + 1$                               | 193       | 2.1    |
| $e_1 < e_1 < e_2$                                                      | A001519 | ves        | L <sub>0</sub> (012), F <sub>bn=1</sub> (see [13, 21])       | 233       | 2.1    |
| $e_1 = e_k$                                                            | A229046 | по         | recurrence $\rightarrow$ gf?                                 | 304       | 2.1    |
| c1 > c2                                                                | A000108 | V05        | Catalan numbers                                              | 429.A     | 2.1    |
| $e_i \ge e_k$ and $e_i < e_k$                                          | A000108 | 708        | Catalan numbers                                              | 429.B     | 21     |
| $e_1 \ge e_2$ and $e_2 \ge e_3$                                        | A000108 | no         | Catalan numbers                                              | 429.C     | 2.1    |
| $e_1 \neq e_2 = e_k$                                                   | A047970 | 2008       | S. (31542), nexus numbers                                    | 523       | 2.1    |
| $e_i \leq e_k$ and $e_i \geq e_k$                                      | A108307 | BO         | set partitions avoiding enhanced 3-crossings                 | 772.A     | 2.1    |
| 42424                                                                  | A108307 | по         | set partitions avoiding enhanced 3-crossings                 | 772.B     | 2.1    |
| $e_1 < e_2 = e_k$                                                      | A000110 | ves        | L <sub>a</sub> (011) (see [13]), Bell numbers B <sub>a</sub> | 877.A     | 2.1    |
| $c_1 = c_2 \ge c_k$                                                    | A000110 | no         | In(000, 110), Be                                             | 877,B     | 2.1    |
| $e_1 \neq e_2$ and $e_2 = e_2$                                         | A000110 | VH6        | L.(010, 101), B.                                             | 877.C     | 2.1    |
| $c_1 \ge c_1$ and $c_2 = c_2$                                          | A000110 | по         | L <sub>0</sub> (000, 101), B <sub>0</sub>                    | 877.D     | 2.1    |
| $e_i > e_i$                                                            | A000384 | yes.       | central binomial coefficients                                | 924       | 2.1    |
| $c_1 > c_2 \leq c_3$                                                   | A071356 | по         | certain underdiagonal lattice paths                          | 1054      | 2.1    |
| $e_1 > e_2 < e_k$                                                      | A033321 | 5768       | S. (2143, 3142, 4132) (see [8])                              | 1265      | 2.2    |
| $c_1 > c_2$ and $c_3 \le c_4$                                          | A106228 | по         | Ly(101, 102), S., (4123, 4132, 4213)                         | 1347      | 2.2    |
| $c_1 = c_2 = c_k$                                                      | A000111 | 5988       | In(000) (see [13]), Euler up/down numbers                    | 1385      | 2.2    |
| $e_i > e_j$ and $e_i < e_k$                                            | A200753 | yes        | I <sub>n</sub> (102), [21]                                   | 1694      | 2.2    |
| $e_i > e_k$ and $e_i < e_k$                                            | A006318 | 5908       | In (021) [13, 21], large Schröder numbers Rn                 | -1 1806,A | 2.2    |
| $e_i > e_i$ and $e_i > e_i$                                            | A006318 | 1008       | L. (210, 201, 101, 100), Rn-1                                | 1806.B    | 2.2    |
| $e_1 \ge e_1$ and $e_1 > e_2$                                          | A006318 | yes        | I <sub>0</sub> (210, 201, 100, 110), R <sub>0-1</sub>        | 1806,C    | 2.2    |
| $e_i \ge e_j \neq e_k$ and $e_i \ge e_k$                               | A006318 | <b>yes</b> | La(210, 201, 101, 110), Rn-1                                 | 1806,D    | 2.2    |
| $e_1 \ge e_2 \ge e_k$ and $e_i > e_k$                                  | A001181 | во         | Bacter permutations                                          | 2074      | 2.2    |
| $e_i > e_j$ and $e_i > e_k$                                            | A098746 | no.        | L <sub>n</sub> (210, 201, 100), S <sub>n</sub> (4231, 42513) | 2549,A    | 2.2    |
| $c_i > c_j \neq c_k$ and $c_i \ge c_k$                                 | A098746 | по         | In (210, 201, 101), S. (4231, 42513)                         | 2549,B    | 2.2    |
| $e_i \ge e_j \neq e_k$ and $e_i > e_k$                                 | A098746 | no         | I <sub>n</sub> (210, 201, 110), S <sub>4</sub> (4231, 42513) | 2549,C    | 2.2    |
| $e_j < e_k$ and $e_i \ge e_k$                                          | A117106 | по         | I <sub>n</sub> (201, 101), S <sub>n</sub> (21354)            | 2958,A    | 2.2    |
| $c_1 > c_2 \ge c_3$                                                    | A117106 | по         | I <sub>n</sub> (210, 100), S <sub>n</sub> (21354)            | 2958,B    | 2.2    |
|                                                                        | A117106 | DO         | L. (210, 110), S. (21354)                                    | 2958,C    | 2.2    |
| $c_1 \le c_2$ and $c_1 > c_2$                                          | A117106 | no         | I <sub>6</sub> (201, 100), S <sub>6</sub> (21354)            | 2958,D    | 2.2    |
| $e_i < e_k$ and $e_i = e_k$                                            | A113227 | 3488       | I <sub>n</sub> (101), S <sub>n</sub> (1-23-4), (see [13])    | 3207,A    | 2.2    |
| $c_i = c_j > c_k$                                                      | A113227 | yes        | I <sub>n</sub> (110), S <sub>n</sub> (1-23-4), (see [13])    | 3207,B    | 2.2    |

Table 2: Patterns whose avoidance sequences appear to match sequences in the OEIS. Those marked as "yes" are cited, if known, and otherwise are proven in this paper.

- ECO method (Enumeration of Combinatorial Objects) was developed by some researchers of the Universities of Florence and Sienna [Barcucci, Del Lungo, Pergola, Pinzani 1999].
- Let C be a combinatorial class, that is to say any set of discrete objects equipped with a notion of size, such that there is a finite number of objects C<sub>n</sub> of size n for any integer n. Assume also that C<sub>1</sub> contains exactly one object.
- A function  $\vartheta : C_n \to \mathcal{P}(C_{n+1})$  is an *ECO operator* if:
- Every object of size n + 1 is uniquely obtained from an object of size n through the application of θ.

- ECO method (Enumeration of Combinatorial Objects) was developed by some researchers of the Universities of Florence and Sienna [Barcucci, Del Lungo, Pergola, Pinzani 1999].
- Let C be a combinatorial class, that is to say any set of discrete objects equipped with a notion of size, such that there is a finite number of objects C<sub>n</sub> of size n for any integer n. Assume also that C<sub>1</sub> contains exactly one object.
- A function  $\vartheta : C_n \to \mathcal{P}(C_{n+1})$  is an *ECO operator* if:

Every object of size n + 1 is uniquely obtained from an object of size n through the application of θ.

- ECO method (Enumeration of Combinatorial Objects) was developed by some researchers of the Universities of Florence and Sienna [Barcucci, Del Lungo, Pergola, Pinzani 1999].
- Let C be a combinatorial class, that is to say any set of discrete objects equipped with a notion of size, such that there is a finite number of objects C<sub>n</sub> of size n for any integer n. Assume also that C<sub>1</sub> contains exactly one object.
- A function  $\vartheta : C_n \to \mathcal{P}(C_{n+1})$  is an *ECO operator* if:

ID for any  $O_1, O_2 \in C_n$ , we have  $\vartheta(O_1) \cap \vartheta(O_2) = \emptyset$ ; ID fon any  $O' \in C_{n+1}$  there is  $O \in C_n$  such that  $O' \in \vartheta(O)$ .

 Every object of size n + 1 is uniquely obtained from an object of size n through the application of ϑ.

- ECO method (Enumeration of Combinatorial Objects) was developed by some researchers of the Universities of Florence and Sienna [Barcucci, Del Lungo, Pergola, Pinzani 1999].
- Let C be a combinatorial class, that is to say any set of discrete objects equipped with a notion of size, such that there is a finite number of objects C<sub>n</sub> of size n for any integer n. Assume also that C<sub>1</sub> contains exactly one object.
- A function  $\vartheta : C_n \to \mathcal{P}(C_{n+1})$  is an *ECO operator* if:

• for any  $O_1, O_2 \in C_n$ , we have  $\vartheta(O_1) \cap \vartheta(O_2) = \emptyset$ ;

2) fon any  $O' \in C_{n+1}$  there is  $O \in C_n$  such that  $O' \in \vartheta(O)$ 

Every object of size n + 1 is uniquely obtained from an object of size n through the application of θ.

- ECO method (Enumeration of Combinatorial Objects) was developed by some researchers of the Universities of Florence and Sienna [Barcucci, Del Lungo, Pergola, Pinzani 1999].
- Let C be a combinatorial class, that is to say any set of discrete objects equipped with a notion of size, such that there is a finite number of objects C<sub>n</sub> of size n for any integer n. Assume also that C<sub>1</sub> contains exactly one object.
- A function ∂ : C<sub>n</sub> → P(C<sub>n+1</sub>) is an ECO operator if:
  for any O<sub>1</sub>, O<sub>2</sub> ∈ C<sub>n</sub>, we have ϑ(O<sub>1</sub>) ∩ ϑ(O<sub>2</sub>) = ∅;
  fon any O' ∈ C<sub>n+1</sub> there is O ∈ C<sub>n</sub> such that O' ∈ ϑ(O).
- Every object of size n + 1 is uniquely obtained from an object of size n through the application of θ.

- ECO method (Enumeration of Combinatorial Objects) was developed by some researchers of the Universities of Florence and Sienna [Barcucci, Del Lungo, Pergola, Pinzani 1999].
- Let C be a combinatorial class, that is to say any set of discrete objects equipped with a notion of size, such that there is a finite number of objects C<sub>n</sub> of size n for any integer n. Assume also that C<sub>1</sub> contains exactly one object.
- A function ∂ : C<sub>n</sub> → P(C<sub>n+1</sub>) is an ECO operator if:
  for any O<sub>1</sub>, O<sub>2</sub> ∈ C<sub>n</sub>, we have ϑ(O<sub>1</sub>) ∩ ϑ(O<sub>2</sub>) = ∅;
  fon any O' ∈ C<sub>n+1</sub> there is O ∈ C<sub>n</sub> such that O' ∈ ϑ(O).
- Every object of size n + 1 is uniquely obtained from an object of size n through the application of θ.

### Generating trees

- The growth described by θ can be represented by means of a generating tree: a rooted infinite tree whose vertices are the objects of C. The objects having the same size lie at the same level (the element of C<sub>1</sub> is at the root), and the sons of an object are the objects it produces through θ.
- If the recursive growth described by ϑ is sufficiently regular, then it can be described by means of a succession rule, i.e. a system of the form:

$$\begin{cases} (a) \\ (k) \rightsquigarrow (e_1)(e_2)\dots(e_k). \end{cases},$$

where  $(a), (k), (e_i) \in \mathbb{N}^k$ .

 Succession rules (or generating trees) have been studied by West (1995) and Banderier, Bousquet-Mélou, Denise, Flajolet, Gardy, Gouyou-Beauchamps (2005).

## Generating trees

- The growth described by *θ* can be represented by means of a generating tree: a rooted infinite tree whose vertices are the objects of *C*. The objects having the same size lie at the same level (the element of *C*<sub>1</sub> is at the root), and the sons of an object are the objects it produces through *θ*.
- If the recursive growth described by θ is sufficiently regular, then it can be described by means of a succession rule, i.e. a system of the form:

$$\begin{cases} (a) \\ (k) \rightsquigarrow (e_1)(e_2) \dots (e_k). \end{cases},$$

where  $(a), (k), (e_i) \in \mathbb{N}^k$ .

 Succession rules (or generating trees) have been studied by West (1995) and Banderier, Bousquet-Mélou, Denise, Flajolet, Gardy, Gouyou-Beauchamps (2005).

## Generating trees

- The growth described by *θ* can be represented by means of a generating tree: a rooted infinite tree whose vertices are the objects of *C*. The objects having the same size lie at the same level (the element of *C*<sub>1</sub> is at the root), and the sons of an object are the objects it produces through *θ*.
- If the recursive growth described by θ is sufficiently regular, then it can be described by means of a succession rule, i.e. a system of the form:

$$\begin{cases} (a) \\ (k) \rightsquigarrow (e_1)(e_2) \dots (e_k). \end{cases},$$

where  $(a), (k), (e_i) \in \mathbb{N}^k$ .

 Succession rules (or generating trees) have been studied by West (1995) and Banderier, Bousquet-Mélou, Denise, Flajolet, Gardy, Gouyou-Beauchamps (2005).

- Non decreasing sequences  $I_n(10)$ : inversion sequences such that  $e_1 = 0$  and  $e_{i+1} \ge e_i$ .
- Enumerated by Catalan numbers,  $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ .
- Let  $e = e_1 \dots e_n$ . The ECO operator adds the element  $e_{n+1}$  to e in all possible ways from  $e_n$  to n. The sequence e is labelled  $(n + 1 e_n)$ .

• We obtain:

$$\Omega_{cat} = \begin{cases} (2) \\ (k) \rightsquigarrow (2)(3) \dots (k)(k+1) \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

- Non decreasing sequences *I<sub>n</sub>*(10): inversion sequences such that *e*<sub>1</sub> = 0 and *e*<sub>i+1</sub> ≥ *e*<sub>i</sub>.
- Enumerated by Catalan numbers,  $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ .
- Let  $e = e_1 \dots e_n$ . The ECO operator adds the element  $e_{n+1}$  to e in all possible ways from  $e_n$  to n. The sequence e is labelled  $(n + 1 e_n)$ .

• We obtain:

$$\Omega_{cat} = \begin{cases} (2) \\ (k) \rightsquigarrow (2)(3) \dots (k)(k+1) \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

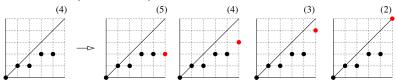
- Non decreasing sequences *I<sub>n</sub>*(10): inversion sequences such that *e*<sub>1</sub> = 0 and *e*<sub>i+1</sub> ≥ *e*<sub>i</sub>.
- Enumerated by Catalan numbers,  $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ .
- Let  $e = e_1 \dots e_n$ . The ECO operator adds the element  $e_{n+1}$  to e in all possible ways from  $e_n$  to n. The sequence e is labelled  $(n + 1 e_n)$ .

We obtain:

$$\Omega_{cat} = \begin{cases} (2) \\ (k) \rightsquigarrow (2)(3) \dots (k)(k+1) \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

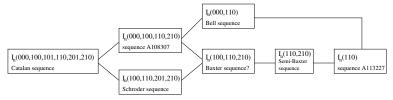
- Non decreasing sequences  $I_n(10)$ : inversion sequences such that  $e_1 = 0$  and  $e_{i+1} \ge e_i$ .
- Enumerated by Catalan numbers,  $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ .
- Let  $e = e_1 \dots e_n$ . The ECO operator adds the element  $e_{n+1}$  to e in all possible ways from  $e_n$  to n. The sequence e is labelled  $(n + 1 e_n)$ .



We obtain:

$$\Omega_{cat} = \begin{cases} (2) \\ (k) \rightsquigarrow (2)(3) \dots (k)(k+1) \end{cases}$$

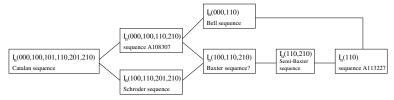
• We consider a hierarchy of families of inversion sequences ordered by inclusion according to the following scheme:



- We handle all these families in a unified way by providing:
  - a (possible) combinatorial characterization
  - a recursive growth by means of generating treeses
  - enumeration
  - possible connections with other combinatorial structures

・ロット (雪) (日) (日) (日)

• We consider a hierarchy of families of inversion sequences ordered by inclusion according to the following scheme:

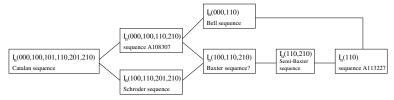


#### • We handle all these families in a unified way by providing:

- a (possible) combinatorial characterization
- a recursive growth by means of generating trees
- enumeration
- possible connections with other combinatorial structures

(日) (日) (日) (日) (日) (日) (日)

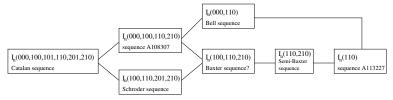
• We consider a hierarchy of families of inversion sequences ordered by inclusion according to the following scheme:



- We handle all these families in a unified way by providing:
  - a (possible) combinatorial characterization
  - a recursive growth by means of generating trees
  - enumeration
  - possible connections with other combinatorial structures

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

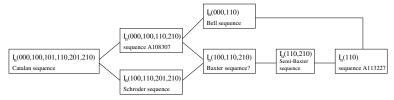
• We consider a hierarchy of families of inversion sequences ordered by inclusion according to the following scheme:



- We handle all these families in a unified way by providing:
  - a (possible) combinatorial characterization
  - a recursive growth by means of generating trees
  - enumeration
  - possible connections with other combinatorial structures

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• We consider a hierarchy of families of inversion sequences ordered by inclusion according to the following scheme:

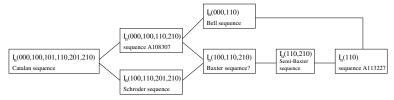


- We handle all these families in a unified way by providing:
  - a (possible) combinatorial characterization
  - a recursive growth by means of generating trees
  - enumeration

possible connections with other combinatorial structures

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• We consider a hierarchy of families of inversion sequences ordered by inclusion according to the following scheme:

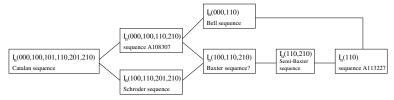


- We handle all these families in a unified way by providing:
  - a (possible) combinatorial characterization
  - a recursive growth by means of generating trees
  - enumeration
  - possible connections with other combinatorial structures

(ロ) (同) (三) (三) (三) (○) (○)

# Aims of the paper

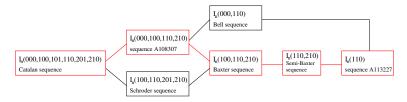
• We consider a hierarchy of families of inversion sequences ordered by inclusion according to the following scheme:



- We handle all these families in a unified way by providing:
  - a (possible) combinatorial characterization
  - a recursive growth by means of generating trees
  - enumeration
  - possible connections with other combinatorial structures
- We prove some results conjectured in [Martinez, Savage 2016].

# Aims of the paper

In this talk we focus on the families of the chain:



 The recursive construction (and the generating tree) of any family is obtained as an extension of the construction (and the generating tree) of a smaller one, starting from *I<sub>n</sub>*(000, 100, 110, 101, 201, 210) (Catalan sequence).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

# Aims of the paper

In this talk we focus on the families of the chain:



• The recursive construction (and the generating tree) of any family is obtained as an extension of the construction (and the generating tree) of a smaller one, starting from  $I_n(000, 100, 110, 101, 201, 210)$  (Catalan sequence).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### • Let $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$

Characterization: a sequence e = e<sub>1</sub> ... e<sub>n</sub> ∈ l<sub>n</sub><sup>cat</sup> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>i</sub> > e<sub>i</sub> for all j > i + 1.

・ロト・日本・日本・日本・日本

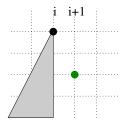
Why this characterization?

- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: a sequence e = e<sub>1</sub>...e<sub>n</sub> ∈ I<sup>cat</sup><sub>n</sub> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>i</sub> > e<sub>i</sub> for all j > i + 1.

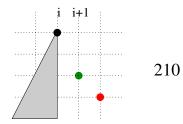
(日) (日) (日) (日) (日) (日) (日)

Why this characterization?

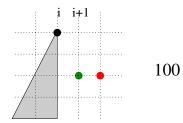
- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: a sequence e = e<sub>1</sub> ... e<sub>n</sub> ∈ I<sub>n</sub><sup>cat</sup> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>j</sub> > e<sub>i</sub> for all j > i + 1.
- Why this characterization?



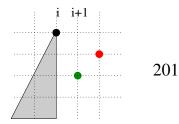
- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: a sequence e = e<sub>1</sub> ... e<sub>n</sub> ∈ I<sub>n</sub><sup>cat</sup> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>j</sub> > e<sub>i</sub> for all j > i + 1.
- Why this characterization?



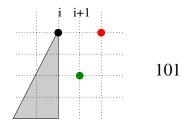
- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: a sequence e = e<sub>1</sub> ... e<sub>n</sub> ∈ I<sub>n</sub><sup>cat</sup> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>j</sub> > e<sub>i</sub> for all j > i + 1.
- Why this characterization?



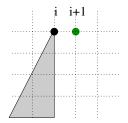
- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: a sequence e = e<sub>1</sub> ... e<sub>n</sub> ∈ I<sub>n</sub><sup>cat</sup> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>j</sub> > e<sub>i</sub> for all j > i + 1.
- Why this characterization?



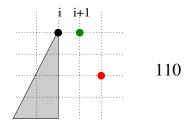
- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: a sequence e = e<sub>1</sub> ... e<sub>n</sub> ∈ I<sub>n</sub><sup>cat</sup> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>j</sub> > e<sub>i</sub> for all j > i + 1.
- Why this characterization?



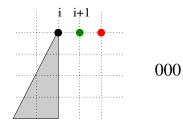
- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: a sequence e = e<sub>1</sub> ... e<sub>n</sub> ∈ I<sub>n</sub><sup>cat</sup> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>j</sub> > e<sub>i</sub> for all j > i + 1.
- Why this characterization?



- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: a sequence e = e<sub>1</sub>...e<sub>n</sub> ∈ I<sub>n</sub><sup>cat</sup> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>j</sub> > e<sub>i</sub> for all j > i + 1.
- Why this characterization?



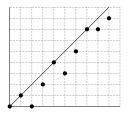
- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: a sequence e = e<sub>1</sub>...e<sub>n</sub> ∈ I<sub>n</sub><sup>cat</sup> if and only if for any *i* we have: if e<sub>i+1</sub> ≤ e<sub>i</sub> (weak descent) then e<sub>j</sub> > e<sub>i</sub> for all j > i + 1.
- Why this characterization?



- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: an inversion sequence  $e = e_1 \dots e_n \in I_n^{cat}$  if and only if for any *i* we have: if  $e_{i+1} \leq e_i$  (weak descent) then  $e_i > e_i$  for all j > i + 1.
- In [Martinez, Savage 2016] is conjectured that I<sup>cat</sup> is counted by Catalan numbers.

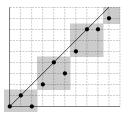
(日) (日) (日) (日) (日) (日) (日)

- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: an inversion sequence  $e = e_1 \dots e_n \in I_n^{cat}$  if and only if for any *i* we have: if  $e_{i+1} \leq e_i$  (weak descent) then  $e_j > e_i$  for all j > i + 1.



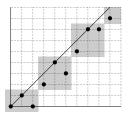
 In [Martinez, Savage 2016] is conjectured that I<sup>cat</sup> is counted by Catalan numbers.

- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: an inversion sequence  $e = e_1 \dots e_n \in I_n^{cat}$  if and only if for any *i* we have: if  $e_{i+1} \leq e_i$  (weak descent) then  $e_j > e_i$  for all j > i + 1.



 In [Martinez, Savage 2016] is conjectured that I<sup>cat</sup> is counted by Catalan numbers.

- Let  $I_n^{cat} = I_n(\geq, -, \geq) = I_n(000, 100, 101, 110, 201, 210).$
- Characterization: an inversion sequence  $e = e_1 \dots e_n \in I_n^{cat}$  if and only if for any *i* we have: if  $e_{i+1} \leq e_i$  (weak descent) then  $e_j > e_i$  for all j > i + 1.



 In [Martinez, Savage 2016] is conjectured that I<sup>cat</sup> is counted by Catalan numbers.

#### Proposition

There is a bijective correspondence between sequences of  $I_n^{cat}$  and non-crossing partitions of n.

- A partition of  $[n] = \{1, ..., n\}$  is a pairwise disjoint set of non-empty subsets, called blocks, whose union is [n].
- A noncrossing partition of [n] is a partition in which no two blocks in the graphical representation "cross" each other.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• It is well-known that noncrossing partitions of [n] are counted by Catalan numbers.

#### Proposition

There is a bijective correspondence between sequences of  $I_n^{cat}$  and non-crossing partitions of n.

- A partition of [n] = {1,...,n} is a pairwise disjoint set of non-empty subsets, called blocks, whose union is [n].
- A noncrossing partition of [n] is a partition in which no two blocks in the graphical representation "cross" each other.

- ロト・日本・日本・日本・日本・日本

• It is well-known that noncrossing partitions of [n] are counted by Catalan numbers.

#### Proposition

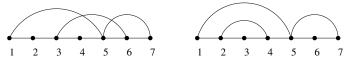
There is a bijective correspondence between sequences of  $I_n^{cat}$  and non-crossing partitions of n.

- A partition of [n] = {1,...,n} is a pairwise disjoint set of non-empty subsets, called blocks, whose union is [n].
- A noncrossing partition of [n] is a partition in which no two blocks in the graphical representation "cross" each other.
- It is well-known that noncrossing partitions of [n] are counted by Catalan numbers.

### Proposition

There is a bijective correspondence between sequences of  $I_n^{cat}$  and non-crossing partitions of *n*.

- A partition of [n] = {1,...,n} is a pairwise disjoint set of non-empty subsets, called blocks, whose union is [n].
- A noncrossing partition of [n] is a partition in which no two blocks in the graphical representation "cross" each other.

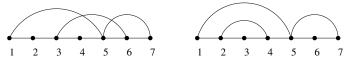


#### $\{1,5,7\} \{2\} \{3,6\} \{4\} \\ \{1,5,7\} \{2,4\} \{3\} \{6\}$

#### Proposition

There is a bijective correspondence between sequences of  $I_n^{cat}$  and non-crossing partitions of *n*.

- A partition of [n] = {1,...,n} is a pairwise disjoint set of non-empty subsets, called blocks, whose union is [n].
- A noncrossing partition of [n] is a partition in which no two blocks in the graphical representation "cross" each other.



 $\{1,5,7\} \{2\} \{3,6\} \{4\} \\ \{1,5,7\} \{2,4\} \{3\} \{6\}$ 

 It is well-known that noncrossing partitions of [n] are counted by Catalan numbers.

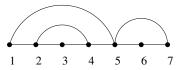
### • Consider the following noncrossing partition of n = 7:

• We build the associated sequence in the following steps:



(日) (日) (日) (日) (日) (日) (日)

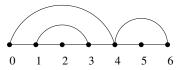
• Consider the following noncrossing partition of n = 7:



• We build the associated sequence in the following steps:



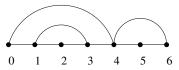
• Consider the following noncrossing partition of n = 7:



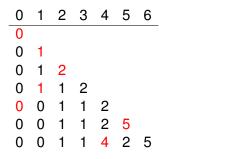
• We build the associated sequence in the following steps:



• Consider the following noncrossing partition of *n* = 7:



• We build the associated sequence in the following steps:



## A more general result

#### Proposition

The previous construction establishes a bijection between partitions of [n] (Bell numbers) and  $I_n(000, 110)$ .

- Crossing partition:
- Gives:



▲□▶▲圖▶▲圖▶▲圖▶ = つへで

# A more general result

### Proposition

The previous construction establishes a bijection between partitions of [n] (Bell numbers) and  $I_n(000, 110)$ .

• Crossing partition:



Gives:



# A more general result

### Proposition

The previous construction establishes a bijection between partitions of [n] (Bell numbers) and  $I_n(000, 110)$ .

• Crossing partition:

Gives:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |             |
|---|---|---|---|---|---|---|-------------|
| 0 |   |   |   |   |   |   |             |
| 0 | 1 |   |   |   |   |   |             |
| 0 | 1 | 2 |   |   |   |   |             |
| 0 | 1 | 2 | 3 |   |   |   |             |
| 0 | 0 | 1 | 2 | 3 |   |   |             |
| 0 | 0 | 2 | 1 | 2 | 3 |   | pattern 101 |
| 0 | 0 | 2 | 1 | 4 | 2 | 3 | pattern 201 |

(ロ) (同) (三) (三) (三) (○) (○)

### Our general approach

- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let h (resp. k) the number of active sites less than or equal to (resp. greater than) e<sub>n</sub>.

・ロト ・聞ト ・ヨト ・ヨト 三日

#### Our general approach

- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let h (resp. k) the number of active sites less than or equal to (resp. greater than) e<sub>n</sub>.

#### Our general approach

- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let h (resp. k) the number of active sites less than or equal to (resp. greater than) e<sub>n</sub>.

#### Our general approach

- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let h (resp. k) the number of active sites less than or equal to (resp. greater than) e<sub>n</sub>.

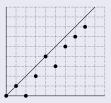
(日) (日) (日) (日) (日) (日) (日)

#### Our general approach

- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let *h* (resp. *k*) the number of active sites less than or equal to (resp. greater than) *e<sub>n</sub>*.

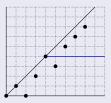
### Our general approach

- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let h (resp. k) the number of active sites less than or equal to (resp. greater than) e<sub>n</sub>.



### Our general approach

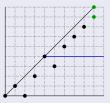
- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let h (resp. k) the number of active sites less than or equal to (resp. greater than) e<sub>n</sub>.



## A generic ECO operator for inversion sequences

#### Our general approach

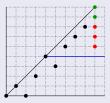
- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let h (resp. k) the number of active sites less than or equal to (resp. greater than) e<sub>n</sub>.



## A generic ECO operator for inversion sequences

#### Our general approach

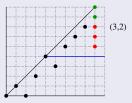
- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let h (resp. k) the number of active sites less than or equal to (resp. greater than) e<sub>n</sub>.



## A generic ECO operator for inversion sequences

#### Our general approach

- Let C be a family of inversion sequences.
- Let a sequence grow by adding an element x at the end of e, and denote by e · x the sequence e<sub>1</sub> ... e<sub>n</sub> x.
- An element  $x \in \{0, \ldots, n\}$  is *active* if  $e_1 \ldots e_n x \in C$ .
- Let h (resp. k) the number of active sites less than or equal to (resp. greater than) e<sub>n</sub>.



### Catalan sequence: a generating tree

#### Proposition

 $I_n^{cat}$  grows according to the generating tree:

$$\Omega_{cat'} = \begin{cases} (1,1) \\ (h,k) \rightsquigarrow (0,k+1)^h \\ (h+k,1), \dots, (h+1,k). \end{cases}$$

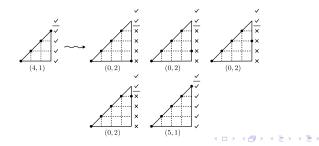
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Catalan sequence: a generating tree

#### Proposition

 $I_n^{cat}$  grows according to the generating tree:

$$\Omega_{cat'} = \begin{cases} (1,1) \\ (h,k) \rightsquigarrow (0,k+1)^h \\ (h+k,1), \dots, (h+1,k) \end{cases}$$



#### • This is a new generating tree for Catalan numbers.

 Our goal is to make all the families in our scheme grow with a growth which extends the one provided by Ω<sub>cat</sub>.

#### Propositior

 $I_n^{cat}$  is the set of inversion sequences of  $AV_n(12-3, 2-14-3)$ , which therefore turns out to be another family of permutations counted by Catalan numbers.

・ロット (雪) (日) (日) (日)

- This is a new generating tree for Catalan numbers.
- Our goal is to make all the families in our scheme grow with a growth which extends the one provided by Ω<sub>cat</sub>.

#### Propositior

 $l_n^{cat}$  is the set of inversion sequences of  $AV_n(12-3, 2-14-3)$ , which therefore turns out to be another family of permutations counted by Catalan numbers.

・ロト・日本・日本・日本・日本

- This is a new generating tree for Catalan numbers.
- Our goal is to make all the families in our scheme grow with a growth which extends the one provided by Ω<sub>cat</sub>.

#### Proposition

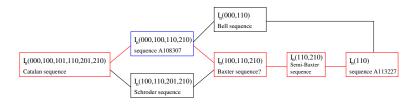
 $I_n^{cat}$  is the set of inversion sequences of  $AV_n(12-3, 2-14-3)$ , which therefore turns out to be another family of permutations counted by Catalan numbers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let us consider  $I_n(\geq,\geq,\geq) = I_n(000, 100, 110, 210)$ .



Let us consider  $I_n(\geq,\geq,\geq) = I_n(000, 100, 110, 210)$ .



< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Let us consider  $I_n(\geq,\geq,\geq) = I_n(000, 100, 110, 210)$ .
- Characterization: inversion sequences that can be uniquely decomposed in two strictly increasing sequences.

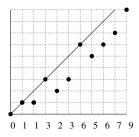
- Let us consider  $I_n(\geq,\geq,\geq) = I_n(000, 100, 110, 210)$ .
- Characterization: inversion sequences that can be uniquely decomposed in two strictly increasing sequences.

・ロト・日本・日本・日本・日本

- Let us consider  $I_n(\geq,\geq,\geq) = I_n(000, 100, 110, 210)$ .
- Characterization: inversion sequences that can be uniquely decomposed in two strictly increasing sequences.

・ロト・日本・日本・日本・日本

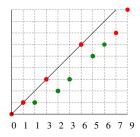
- Let us consider  $I_n(\geq,\geq,\geq) = I_n(000, 100, 110, 210)$ .
- Characterization: inversion sequences that can be uniquely decomposed in two strictly increasing sequences.



・ロン ・雪 と ・ ヨ と …

-

- Let us consider  $I_n(\geq,\geq,\geq) = I_n(000, 100, 110, 210)$ .
- Characterization: inversion sequences that can be uniquely decomposed in two strictly increasing sequences.



・ロン ・雪 と ・ ヨ と …

-

#### Proposition

*I<sub>n</sub>*(000, 100, 110, 210) grows according to

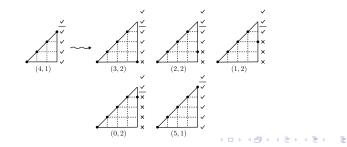
$$\Omega_a = \begin{cases} (1,1) \\ (h,k) & \rightsquigarrow & (0,k+1),\ldots,(h-1,k+1) \\ & & (h+1,k),\ldots,(h+k,1), \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Proposition

*I<sub>n</sub>*(000, 100, 110, 210) *grows according to* 

$$\Omega_a = \begin{cases} (1,1) \\ (h,k) & \rightsquigarrow & (0,k+1),\ldots,(h-1,k+1) \\ & & (h+1,k),\ldots,(h+k,1), \end{cases}$$



#### Proposition

Let  $S_{h,k}(t) \equiv S_{h,k}$  the gf of  $I_n(000, 100, 110, 210)$  with label (h, k), and  $S(t; u, v) \equiv S(u, v) = \sum_{h,k \ge 1} S_{h,k} u^h v^k$ . Then:

$$S(u, v) = tuv + \frac{tv(S(1, v) - S(u, v))}{1 - u} + \frac{tu(S(u, u) - S(u, v))}{u/v - 1}$$

- Apply some variants of the kernel method (obstinate kernel method) developed in [M. Bousquet-Mélou, G. Xin, 2006] and prove that the gf is D-finite;
- The Lagrange inversion formula gives a rather complicated formula for  $b_n = |I_n(000, 100, 110, 210)|$ ;
- The creative telescoping [M. Petkovsek, H.S. Wilf, D.
   Zeilberger, 1996] to obtain a recursive formula, for brain, a solution

#### Proposition

Let  $S_{h,k}(t) \equiv S_{h,k}$  the gf of  $I_n(000, 100, 110, 210)$  with label (h, k), and  $S(t; u, v) \equiv S(u, v) = \sum_{h,k \ge 1} S_{h,k} u^h v^k$ . Then:

$$S(u, v) = tuv + \frac{tv(S(1, v) - S(u, v))}{1 - u} + \frac{tu(S(u, u) - S(u, v))}{u/v - 1}$$

- Apply some variants of the kernel method (obstinate kernel method) developed in [M. Bousquet-Mélou, G. Xin, 2006] and prove that the gf is D-finite;
- The Lagrange inversion formula gives a rather complicated formula for  $b_n = |I_n(000, 100, 110, 210)|$ ;
- The creative telescoping [M. Petkovsek, H.S. Wilf, D. Zeilberger, 1996] to obtain a recursive for mula for basis.

#### Proposition

Let  $S_{h,k}(t) \equiv S_{h,k}$  the gf of  $I_n(000, 100, 110, 210)$  with label (h, k), and  $S(t; u, v) \equiv S(u, v) = \sum_{h,k \ge 1} S_{h,k} u^h v^k$ . Then:

$$S(u, v) = tuv + \frac{tv(S(1, v) - S(u, v))}{1 - u} + \frac{tu(S(u, u) - S(u, v))}{u/v - 1}$$

- Apply some variants of the kernel method (obstinate kernel method) developed in [M. Bousquet-Mélou, G. Xin, 2006] and prove that the gf is D-finite;
- The Lagrange inversion formula gives a rather complicated formula for  $b_n = |I_n(000, 100, 110, 210)|$ ;
- The creative telescoping [M. Petkovsek, H.S. Wilf, D. Zeilberger, 1996] to obtain a recursive formula for brain a social sector formula.

#### Proposition

Let  $S_{h,k}(t) \equiv S_{h,k}$  the gf of  $I_n(000, 100, 110, 210)$  with label (h, k), and  $S(t; u, v) \equiv S(u, v) = \sum_{h,k \ge 1} S_{h,k} u^h v^k$ . Then:

$$S(u, v) = tuv + \frac{tv(S(1, v) - S(u, v))}{1 - u} + \frac{tu(S(u, u) - S(u, v))}{u/v - 1}$$

- Apply some variants of the kernel method (obstinate kernel method) developed in [M. Bousquet-Mélou, G. Xin, 2006] and prove that the gf is D-finite;
- The Lagrange inversion formula gives a rather complicated formula for  $b_n = |I_n(000, 100, 110, 210)|$ ;
- The creative telescoping [M. Petkovsek, H.S. Wilf, D. Zeilberger, 1996] to obtain a recursive formula for b<sub>n</sub>.

## *I<sub>n</sub>*(000, 100, 110, 210): enumeration

#### Proposition

The numbers  $b_n = |I_n(000, 100, 110, 210)|$  satisfy the following polynomial recurrence relation:

 $8(n+3)(n+2)(n+1) b_n + (n+2)(15n^2 + 133n + 280) b_{n+1} + (92n^2 + 6n^3 + 464n + 776) b_{n+2} - (n+9)(n+8)(n+6) b_{n+3} = 0 \,.$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## *I<sub>n</sub>*(000, 100, 110, 210): enumeration

#### Proposition

The numbers  $b_n = |I_n(000, 100, 110, 210)|$  satisfy the following polynomial recurrence relation:

$$\begin{split} &8(n+3)(n+2)(n+1)\,b_n\,+\,(n+2)(15n^2+133n+280)\,b_{n+1}\,+\\ &(92n^2+6n^3+464n+776)\,b_{n+2}-\,(n+9)(n+8)(n+6)\,b_{n+3}\,=\,0\,. \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

First terms of the sequence:

## *I<sub>n</sub>*(000, 100, 110, 210): enumeration

#### Proposition

The numbers  $b_n = |I_n(000, 100, 110, 210)|$  satisfy the following polynomial recurrence relation:

 $8(n+3)(n+2)(n+1) b_n + (n+2)(15n^2 + 133n + 280) b_{n+1} + (92n^2 + 6n^3 + 464n + 776) b_{n+2} - (n+9)(n+8)(n+6) b_{n+3} = 0 \,.$ 

First terms of the sequence:

 $1, 2, 5, 15, 51, 191, 772, 3320, 15032, 71084, 348889, 1768483, \ldots$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

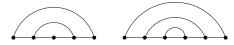
- Martinez, Savage (2016) conjectured that {*b<sub>n</sub>*}<sub>*n*≥0</sub> is sequence A108307 in The Online Encyclopedia of Integer Sequences.
- This sequence counts partitions avoiding enhanced 3-nestings (or crossings).
- M. Bousquet-Mélou, G. Xin (2006) proved that the number a<sub>n</sub> of partitions avoiding enhanced 3-nestings of size n satisfies:

 $8(n+3)(n+2)(n+1)a_n + 3(n+2)(5n^2 + 47n + 104)a_{n+1} + 3(n+4)(2n+11)(n+7)a_{n+2} - (n+9)(n+8)(n+7)a_{n+3} = 0.$ 

- Martinez, Savage (2016) conjectured that {*b<sub>n</sub>*}<sub>n≥0</sub> is sequence A108307 in The Online Encyclopedia of Integer Sequences.
- This sequence counts *partitions avoiding enhanced 3-nestings (or crossings)*.
- M. Bousquet-Mélou, G. Xin (2006) proved that the number a<sub>n</sub> of partitions avoiding enhanced 3-nestings of size n satisfies:

 $8(n+3)(n+2)(n+1)a_n + 3(n+2)(5n^2 + 47n + 104)a_{n+1} + 3(n+4)(2n+11)(n+7)a_{n+2} - (n+9)(n+8)(n+7)a_{n+3} = 0.$ 

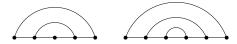
- Martinez, Savage (2016) conjectured that {*b<sub>n</sub>*}<sub>n≥0</sub> is sequence A108307 in The Online Encyclopedia of Integer Sequences.
- This sequence counts *partitions avoiding enhanced 3-nestings (or crossings).*



• M. Bousquet-Mélou, G. Xin (2006) proved that the number *a<sub>n</sub>* of partitions avoiding enhanced 3-nestings of size *n* satisfies:

 $8(n+3)(n+2)(n+1)a_n + 3(n+2)(5n^2 + 47n + 104)a_{n+1} + 3(n+4)(2n+11)(n+7)a_{n+2} - (n+9)(n+8)(n+7)a_{n+3} = 0.$ 

- Martinez, Savage (2016) conjectured that {*b<sub>n</sub>*}<sub>*n*≥0</sub> is sequence A108307 in The Online Encyclopedia of Integer Sequences.
- This sequence counts *partitions avoiding enhanced 3-nestings (or crossings)*.



• M. Bousquet-Mélou, G. Xin (2006) proved that the number *a<sub>n</sub>* of partitions avoiding enhanced 3-nestings of size *n* satisfies:

$$\frac{8(n+3)(n+2)(n+1)a_n+3(n+2)(5n^2+47n+104)a_{n+1}+3(n+4)(2n+11)(n+7)a_{n+2}-(n+9)(n+8)(n+7)a_{n+3}=0.$$

## *I<sub>n</sub>*(000, 100, 110, 210): combinatorial objects

#### Proposition

For all  $n \ge 1$  we have that  $a_n = b_n$ . Then  $I_n(000, 100, 110, 210)$  is counted by sequence A108307.

Sequence A108307 counts also inversion sequences such that:

$$\begin{cases} e_1 = 0, \\ 0 \le e_2 \le 1, \\ e_n \le \max\{e_{n-1}, e_{n-2}\} + 1. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Find a bijective proof between these sequences and  $I_n(000, 100, 110, 210)$ .

## $I_n(000, 100, 110, 210)$ : combinatorial objects

#### Proposition

For all  $n \ge 1$  we have that  $a_n = b_n$ . Then  $I_n(000, 100, 110, 210)$  is counted by sequence A108307.

Sequence A108307 counts also inversion sequences such that:

$$\left\{ egin{array}{ll} {e_1 = 0,} \\ {0 \le {e_2} \le 1,} \\ {e_n \le \max \{ {e_{n - 1}}, {e_{n - 2}} \} + 1.} \end{array} 
ight.$$

(日) (日) (日) (日) (日) (日) (日)

• Find a bijective proof between these sequences and  $I_n(000, 100, 110, 210)$ .

## *I<sub>n</sub>*(000, 100, 110, 210): combinatorial objects

#### Proposition

For all  $n \ge 1$  we have that  $a_n = b_n$ . Then  $I_n(000, 100, 110, 210)$  is counted by sequence A108307.

Sequence A108307 counts also inversion sequences such that:

$$\begin{cases} e_1 = 0, \\ 0 \le e_2 \le 1, \\ e_n \le \max\{e_{n-1}, e_{n-2}\} + 1. \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Find a bijective proof between these sequences and  $I_n(000, 100, 110, 210)$ .

Let us consider  $I_n(\geq,\geq,>) = I_n(100, 110, 210)$ .



Let us consider  $I_n(\geq,\geq,>) = I_n(100, 110, 210)$ .



< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Let us consider  $I_n(\geq,\geq,>) = I_n(100, 110, 210)$ .
- An inversion (e<sub>i</sub>, e<sub>j</sub>) in a sequence e = e<sub>1</sub>...e<sub>n</sub> is a pair of entries e<sub>i</sub> e<sub>i</sub> such that i < j and e<sub>i</sub> > e<sub>j</sub>.
- Characterization: inversion sequences such that for every inversion (*e<sub>i</sub>*, *e<sub>j</sub>*) we have that *e<sub>i</sub>* is a left-to-right maximum and *e<sub>i</sub>* is a right-to-left minumum.

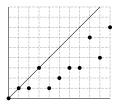
- Let us consider  $I_n(\geq,\geq,>) = I_n(100,110,210)$ .
- An inversion (e<sub>i</sub>, e<sub>j</sub>) in a sequence e = e<sub>1</sub>...e<sub>n</sub> is a pair of entries e<sub>i</sub> e<sub>i</sub> such that i < j and e<sub>i</sub> > e<sub>i</sub>.
- Characterization: inversion sequences such that for every inversion (*e<sub>i</sub>*, *e<sub>j</sub>*) we have that *e<sub>i</sub>* is a left-to-right maximum and *e<sub>i</sub>* is a right-to-left minumum.

- ロト・日本・日本・日本・日本・日本

- Let us consider  $I_n(\geq,\geq,>) = I_n(100,110,210)$ .
- An inversion (e<sub>i</sub>, e<sub>j</sub>) in a sequence e = e<sub>1</sub>...e<sub>n</sub> is a pair of entries e<sub>i</sub> e<sub>i</sub> such that i < j and e<sub>i</sub> > e<sub>j</sub>.
- Characterization: inversion sequences such that for every inversion (*e<sub>i</sub>*, *e<sub>j</sub>*) we have that *e<sub>i</sub>* is a left-to-right maximum and *e<sub>i</sub>* is a right-to-left minumum.

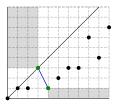
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Let us consider  $I_n(\geq,\geq,>) = I_n(100,110,210)$ .
- An inversion (e<sub>i</sub>, e<sub>j</sub>) in a sequence e = e<sub>1</sub>...e<sub>n</sub> is a pair of entries e<sub>i</sub> e<sub>j</sub> such that i < j and e<sub>i</sub> > e<sub>j</sub>.
- Characterization: inversion sequences such that for every inversion (*e<sub>i</sub>*, *e<sub>j</sub>*) we have that *e<sub>i</sub>* is a left-to-right maximum and *e<sub>i</sub>* is a right-to-left minumum.



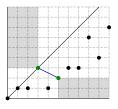
0 1 1 3 1 2 3 3 6 4 7

- Let us consider  $I_n(\geq,\geq,>) = I_n(100,110,210)$ .
- An inversion (e<sub>i</sub>, e<sub>j</sub>) in a sequence e = e<sub>1</sub>...e<sub>n</sub> is a pair of entries e<sub>i</sub> e<sub>j</sub> such that i < j and e<sub>i</sub> > e<sub>j</sub>.
- Characterization: inversion sequences such that for every inversion (*e<sub>i</sub>*, *e<sub>j</sub>*) we have that *e<sub>i</sub>* is a left-to-right maximum and *e<sub>i</sub>* is a right-to-left minumum.



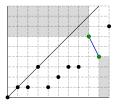
0 1 1 3 1 2 3 3 6 4 7

- Let us consider  $I_n(\geq,\geq,>) = I_n(100,110,210)$ .
- An inversion (e<sub>i</sub>, e<sub>j</sub>) in a sequence e = e<sub>1</sub>...e<sub>n</sub> is a pair of entries e<sub>i</sub> e<sub>j</sub> such that i < j and e<sub>i</sub> > e<sub>j</sub>.
- Characterization: inversion sequences such that for every inversion (*e<sub>i</sub>*, *e<sub>j</sub>*) we have that *e<sub>i</sub>* is a left-to-right maximum and *e<sub>i</sub>* is a right-to-left minumum.



0 1 1 3 1 2 3 3 6 4 7

- Let us consider  $I_n(\geq,\geq,>) = I_n(100,110,210)$ .
- An inversion (e<sub>i</sub>, e<sub>j</sub>) in a sequence e = e<sub>1</sub>...e<sub>n</sub> is a pair of entries e<sub>i</sub> e<sub>j</sub> such that i < j and e<sub>i</sub> > e<sub>j</sub>.
- Characterization: inversion sequences such that for every inversion (*e<sub>i</sub>*, *e<sub>j</sub>*) we have that *e<sub>i</sub>* is a left-to-right maximum and *e<sub>i</sub>* is a right-to-left minumum.



0 1 1 3 1 2 3 3 6 4 7

# *I<sub>n</sub>*(100, 110, 210): generating tree

#### Proposition

 $I_n(100, 110, 210)$  grows according to

$$\Omega_{bax} = \begin{cases} (1,1) \\ (h,k) & \rightsquigarrow & (1,k+1), \dots, (h-1,k+1), (1,k+1) \\ & & (h+1,k), \dots, (h+k,1). \end{cases}$$

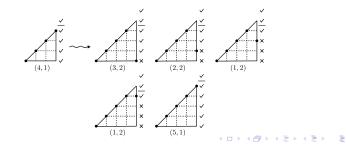
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# *I<sub>n</sub>*(100, 110, 210): generating tree

#### Proposition

#### $I_n(100, 110, 210)$ grows according to

$$\Omega_{bax} = \begin{cases} (1,1) \\ (h,k) & \rightsquigarrow & (1,k+1), \dots, (h-1,k+1), (1,k+1) \\ & & (h+1,k), \dots, (h+k,1). \end{cases}$$



• Martinez, Savage (2016) conjectured that *I<sub>n</sub>*(100, 110, 210) is counted by the Baxter numbers.

The generating tree Ω<sub>bax</sub> is not known in the literature.
 In order to prove this conjecture we have solved the functional equation arising from Ω<sub>bax</sub>, applying the "recipe

#### Proposition

$$2 \sum_{k=0}^{n} \frac{1}{n} \binom{n}{k} \binom{n}{k+1} \binom{n-1}{k-2} + \sum_{\rho=0}^{n} \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-\rho} \binom{n}{(n+\rho-k+1)} + \frac{p}{n} \binom{n}{(n+\rho-k-1)} - 2 \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-\rho} \binom{n}{(n+\rho-k+2)} + \frac{p}{n} \binom{n}{(n+\rho-k-2)} \right] + \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-\rho} \binom{n}{(n+\rho-k+3)} + \frac{p}{n} \binom{n}{(n+\rho-k-3)} \right].$$

- Martinez, Savage (2016) conjectured that *I<sub>n</sub>*(100, 110, 210) is counted by the Baxter numbers.
- The generating tree  $\Omega_{bax}$  is not known in the literature.
- In order to prove this conjecture we have solved the functional equation arising from Ω<sub>bax</sub>, applying the "recipe".

#### Proposition

$$2 \sum_{k=0}^{n} \frac{1}{n} \binom{n}{k} \binom{n}{k+1} \binom{n-1}{k-2} + \sum_{\rho=0}^{n} \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-\rho} \binom{n}{(n+\rho-k+1)} + \frac{p}{n} \binom{n}{(n+\rho-k-1)} - 2 \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-\rho} \binom{n}{(n+\rho-k+2)} + \frac{p}{n} \binom{n}{(n+\rho-k-2)} \right] \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-\rho} \binom{n}{(n+\rho-k+3)} + \frac{p}{n} \binom{n}{(n+\rho-k-3)} \right].$$

- Martinez, Savage (2016) conjectured that *I<sub>n</sub>*(100, 110, 210) is counted by the Baxter numbers.
- The generating tree  $\Omega_{bax}$  is not known in the literature.
- In order to prove this conjecture we have solved the functional equation arising from Ω<sub>bax</sub>, applying the "recipe".

#### Proposition

$$2 \sum_{k=0}^{n} \frac{1}{n} \binom{n}{k} \binom{n}{k+1} \binom{n-1}{k-2} + \sum_{p=0}^{n} \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-p} \binom{n}{n+p-k+1} + \frac{p}{n} \binom{n}{n+p-k-1} - 2 \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-p} \binom{n}{n+p-k+2} + \frac{p}{n} \binom{n}{n+p-k-2} \right] \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-p} \binom{n}{n+p-k+3} + \frac{p}{n} \binom{n}{n+p-k-3} \right].$$

- Martinez, Savage (2016) conjectured that I<sub>n</sub>(100, 110, 210) is counted by the Baxter numbers.
- The generating tree  $\Omega_{bax}$  is not known in the literature.
- In order to prove this conjecture we have solved the functional equation arising from Ω<sub>bax</sub>, applying the "recipe".

#### Proposition

$$2 \sum_{k=0}^{n} \frac{1}{n} \binom{n}{k} \binom{n}{k+1} \binom{n-1}{k-2} + \\ \sum_{p=0}^{n} \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-p} \binom{n}{(n+p-k+1)} + \frac{p}{n} \binom{n}{(n+p-k-1)} \right] \\ -2 \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-p} \binom{n}{(n+p-k+2)} + \frac{p}{n} \binom{n}{(n+p-k-2)} \right] + \\ \left[ \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k-p} \binom{n}{(n+p-k+3)} + \frac{p}{n} \binom{n}{(n+p-k-3)} \right] .$$

### *I<sub>n</sub>*(100, 110, 210): Baxter numbers?

 We have not been able to prove that our formula gives Baxter numbers, defined by:

$$B_n = \frac{2}{n(n+1)^2} \sum_{j=1}^n \binom{n+1}{j-1} \binom{n+1}{j} \binom{n+1}{j+1}.$$

although we have checked that the two sequences coincide for a huge amount of terms.

 We have not been able to find a growth of any Baxter object according to Ω<sub>bax</sub>.

Solved by Dongsu Kim and Zhicong Lin (poster at FPSAC 2017).

## *I<sub>n</sub>*(100, 110, 210): Baxter numbers?

 We have not been able to prove that our formula gives Baxter numbers, defined by:

$$B_n = \frac{2}{n(n+1)^2} \sum_{j=1}^n \binom{n+1}{j-1} \binom{n+1}{j} \binom{n+1}{j+1}.$$

although we have checked that the two sequences coincide for a huge amount of terms.

 We have not been able to find a growth of any Baxter object according to Ω<sub>bax</sub>.

Solved by Dongsu Kim and Zhicong Lin (poster at FPSAC 2017).

# *I<sub>n</sub>*(100, 110, 210): Baxter numbers?

• We have not been able to prove that our formula gives Baxter numbers, defined by:

$$B_n = \frac{2}{n(n+1)^2} \sum_{j=1}^n \binom{n+1}{j-1} \binom{n+1}{j} \binom{n+1}{j+1}.$$

although we have checked that the two sequences coincide for a huge amount of terms.

 We have not been able to find a growth of any Baxter object according to Ω<sub>bax</sub>.

#### News!!!

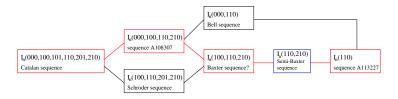
Solved by Dongsu Kim and Zhicong Lin (poster at FPSAC 2017).

### *I<sub>n</sub>*(110, 210): Semi-Baxter sequence

Let us consider  $I_n(\geq, >, >) = I_n(110, 210)$ .

### *I<sub>n</sub>*(110, 210): Semi-Baxter sequence

Let us consider  $I_n(\geq, >, >) = I_n(110, 210)$ .



▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Let us consider  $I_n(\geq, >, >) = I_n(110, 210)$ .
- Characterization: inversion sequences such that for every inversion (e<sub>i</sub>, e<sub>j</sub>) we have that e<sub>i</sub> is a left-to-right maximum.

• Martinez, Savage (2016) conjectured it to be counted by the sequence of *semi-Baxter numbers*.

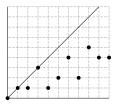
- ロト・日本・日本・日本・日本・日本

- Let us consider  $I_n(\geq, >, >) = I_n(110, 210)$ .
- Characterization: inversion sequences such that for every inversion (e<sub>i</sub>, e<sub>j</sub>) we have that e<sub>i</sub> is a left-to-right maximum.

• Martinez, Savage (2016) conjectured it to be counted by the sequence of *semi-Baxter numbers*.

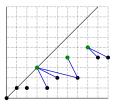
・ロト・日本・日本・日本・日本・日本

- Let us consider  $I_n(\geq, >, >) = I_n(110, 210)$ .
- Characterization: inversion sequences such that for every inversion (e<sub>i</sub>, e<sub>i</sub>) we have that e<sub>i</sub> is a left-to-right maximum.



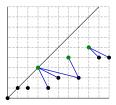
• Martinez, Savage (2016) conjectured it to be counted by the sequence of *semi-Baxter numbers*.

- Let us consider  $I_n(\geq, >, >) = I_n(110, 210)$ .
- Characterization: inversion sequences such that for every inversion (e<sub>i</sub>, e<sub>i</sub>) we have that e<sub>i</sub> is a left-to-right maximum.



• Martinez, Savage (2016) conjectured it to be counted by the sequence of *semi-Baxter numbers*.

- Let us consider  $I_n(\geq, >, >) = I_n(110, 210)$ .
- Characterization: inversion sequences such that for every inversion (e<sub>i</sub>, e<sub>i</sub>) we have that e<sub>i</sub> is a left-to-right maximum.



 Martinez, Savage (2016) conjectured it to be counted by the sequence of *semi-Baxter numbers*.

#### Semi-Baxter permutations

Semi-Baxter permutations =  $AV_n(2-41-3)$  (recall that Baxter permutations =  $AV_n(2-41-3, 3-14-2)$ ). Bouvel, Guerrini, Rechnitzer, R., (2016) studied semi-Baxter permutations:

generating tree for semi-Baxter permutations:

$$\Omega_{semi} = \begin{cases} (1,1) \\ (h,k) \rightsquigarrow (1,k+1), \dots, (h,k+1) \\ (h+k,1), \dots, (h+1,k). \end{cases}$$

semi-Baxter numbers sb<sub>n</sub> satisfy, for n ≥ 2,

$$sb_n = \frac{11n^2 + 11n - 6}{(n+4)(n+3)}sb_{n-1} + \frac{(n-3)(n-2)}{(n+4)(n+3)}sb_{n-2}.$$

• explicit formula (suggested by D. Bevan):

$$sb_{n} = \frac{24}{(n-1)n^{2}(n+1)(n+2)} \sum_{j=0}^{n} \binom{n}{j+2} \binom{n+2}{j+2} \binom{n+j+2}{j+1} \frac{n+j+2}{2} \frac{n$$

Semi-Baxter permutations =  $AV_n(2-41-3)$  (recall that Baxter permutations =  $AV_n(2-41-3, 3-14-2)$ ). Bouvel, Guerrini, Rechnitzer, R., (2016) studied semi-Baxter permutations:

generating tree for semi-Baxter permutations:

$$\Omega_{semi} = \begin{cases} (1,1) \\ (h,k) \rightsquigarrow (1,k+1), \dots, (h,k+1) \\ (h+k,1), \dots, (h+1,k). \end{cases}$$

• semi-Baxter numbers  $sb_n$  satisfy, for  $n \ge 2$ ,

$$sb_n = \frac{11n^2 + 11n - 6}{(n+4)(n+3)}sb_{n-1} + \frac{(n-3)(n-2)}{(n+4)(n+3)}sb_{n-2}.$$

• explicit formula (suggested by D. Bevan):

$$sb_{n} = \frac{24}{(n-1)n^{2}(n+1)(n+2)} \sum_{j=0}^{n} \binom{n}{j+2} \binom{n+2}{j+2} \binom{n+j+2}{j+1} \frac{n+j+2}{2}.$$

Semi-Baxter permutations =  $AV_n(2-41-3)$  (recall that Baxter permutations =  $AV_n(2-41-3, 3-14-2)$ ). Bouvel, Guerrini, Rechnitzer, R., (2016) studied semi-Baxter permutations:

generating tree for semi-Baxter permutations:

$$\Omega_{semi} = \begin{cases} (1,1) \\ (h,k) \rightsquigarrow (1,k+1), \dots, (h,k+1) \\ (h+k,1), \dots, (h+1,k). \end{cases}$$

• semi-Baxter numbers  $sb_n$  satisfy, for  $n \ge 2$ ,

$$sb_n = \frac{11n^2 + 11n - 6}{(n+4)(n+3)}sb_{n-1} + \frac{(n-3)(n-2)}{(n+4)(n+3)}sb_{n-2}.$$

explicit formula (suggested by D. Bevan):

$$sb_{n} = \frac{24}{(n-1)n^{2}(n+1)(n+2)} \sum_{j=0}^{n} \binom{n}{j+2} \binom{n+2}{j+2} \binom{n+j+2}{j+1} \frac{n+j+2}{2}.$$

Semi-Baxter permutations =  $AV_n(2-41-3)$  (recall that Baxter permutations =  $AV_n(2-41-3, 3-14-2)$ ). Bouvel, Guerrini, Rechnitzer, R., (2016) studied semi-Baxter permutations:

generating tree for semi-Baxter permutations:

$$\Omega_{semi} = \begin{cases} (1,1) \\ (h,k) \rightsquigarrow (1,k+1), \dots, (h,k+1) \\ (h+k,1), \dots, (h+1,k). \end{cases}$$

• semi-Baxter numbers  $sb_n$  satisfy, for  $n \ge 2$ ,

$$sb_n = rac{11n^2 + 11n - 6}{(n+4)(n+3)}sb_{n-1} + rac{(n-3)(n-2)}{(n+4)(n+3)}sb_{n-2}.$$

• explicit formula (suggested by D. Bevan):

$$sb_{n} = \frac{24}{(n-1)n^{2}(n+1)(n+2)} \sum_{j=0}^{n} \binom{n}{j+2} \binom{n+2}{j} \binom{n+j+2}{j+1} \frac{n+j+2}{j+1} \frac$$

# $I_n(110, 210)$ : generating tree

#### Proposition

 $I_n(110, 210)$  grows according to

$$\Omega_{semi} = \begin{cases} (1,1) \\ (h,k) \rightsquigarrow (1,k+1), \dots, (h,k+1) \\ (h+k,1), \dots, (h+1,k). \end{cases}$$

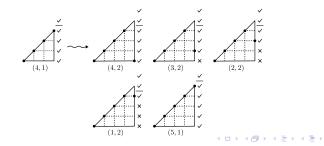
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# $I_n(110, 210)$ : generating tree

#### Proposition

 $I_n(110, 210)$  grows according to

$$\Omega_{semi} = \begin{cases} (1,1) \\ (h,k) \rightsquigarrow (1,k+1), \dots, (h,k+1) \\ (h+k,1), \dots, (h+1,k). \end{cases}$$



ъ

We consider  $I_n(110) = I_n(=, >, >)$ .



We consider  $I_n(110) = I_n(=, >, >)$ .



< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

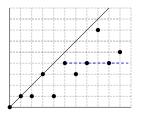
• We consider 
$$I_n(110) = I_n(=, >, >)$$
.

 Characterization: inversion sequences such that e<sub>i</sub> is greater than or equal to the maximum among the elements which occur at least twice (if any) on its left.

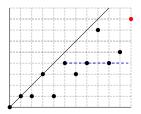
- We consider  $I_n(110) = I_n(=, >, >)$ .
- Characterization: inversion sequences such that e<sub>i</sub> is greater than or equal to the maximum among the elements which occur at least twice (if any) on its left.

(日) (日) (日) (日) (日) (日) (日)

- We consider  $I_n(110) = I_n(=, >, >)$ .
- Characterization: inversion sequences such that e<sub>i</sub> is greater than or equal to the maximum among the elements which occur at least twice (if any) on its left.

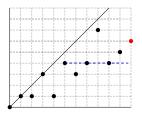


- We consider  $I_n(110) = I_n(=, >, >)$ .
- Characterization: inversion sequences such that e<sub>i</sub> is greater than or equal to the maximum among the elements which occur at least twice (if any) on its left.

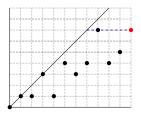


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへの

- We consider  $I_n(110) = I_n(=, >, >)$ .
- Characterization: inversion sequences such that e<sub>i</sub> is greater than or equal to the maximum among the elements which occur at least twice (if any) on its left.



- We consider  $I_n(110) = I_n(=, >, >)$ .
- Characterization: inversion sequences such that e<sub>i</sub> is greater than or equal to the maximum among the elements which occur at least twice (if any) on its left.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Corteel, Martinez, Savage, Weselcouch (2016) proved that the number  $p_n = |I_n(110)|$  can be expressed as  $p_n = \sum_j p_{n,j}$ , where the terms  $p_{n,j}$  satisfy the recurrence relation

$$\begin{cases} p_{1,1} = 1, \\ p_{n,j} = p_{n-1,j-1} + j \sum_{i=j}^{n-1} p_{n-1,i}. \end{cases}$$

#### Thus, $\{p_n\}_{n\geq 0}$ is sequence A113227 in OEIS.

- Sequence A113227 has been studied by D. Callan (2010), and it is proved to count several families of objects:
  - increasing ordered trees with increasing leaves,
  - permutations avoiding 1-23-4,
  - steady paths (equivalent to AV<sub>n</sub>(1-34-2)).

• Corteel, Martinez, Savage, Weselcouch (2016) proved that the number  $p_n = |I_n(110)|$  can be expressed as  $p_n = \sum_j p_{n,j}$ , where the terms  $p_{n,j}$  satisfy the recurrence relation

$$\begin{cases} p_{1,1} = 1, \\ p_{n,j} = p_{n-1,j-1} + j \sum_{i=j}^{n-1} p_{n-1,i}. \end{cases}$$

Thus,  $\{p_n\}_{n\geq 0}$  is sequence A113227 in OEIS.

- Sequence A113227 has been studied by D. Callan (2010), and it is proved to count several families of objects:
  - marked valleys Dyck paths,
  - increasing ordered trees with increasing leaves,
  - permutations avoiding 1-23-4,
  - steady paths (equivalent to AV<sub>n</sub>(1-34-2)).

• Corteel, Martinez, Savage, Weselcouch (2016) proved that the number  $p_n = |I_n(110)|$  can be expressed as  $p_n = \sum_j p_{n,j}$ , where the terms  $p_{n,j}$  satisfy the recurrence relation

$$\begin{cases} p_{1,1} = 1, \\ p_{n,j} = p_{n-1,j-1} + j \sum_{i=j}^{n-1} p_{n-1,i}. \end{cases}$$

- Sequence A113227 has been studied by D. Callan (2010), and it is proved to count several families of objects:
  - marked valleys Dyck paths,
  - increasing ordered trees with increasing leaves,
  - permutations avoiding 1-23-4,
  - steady paths (equivalent to AV<sub>n</sub>(1-34-2)).

• Corteel, Martinez, Savage, Weselcouch (2016) proved that the number  $p_n = |I_n(110)|$  can be expressed as  $p_n = \sum_j p_{n,j}$ , where the terms  $p_{n,j}$  satisfy the recurrence relation

$$\begin{cases} p_{1,1} = 1, \\ p_{n,j} = p_{n-1,j-1} + j \sum_{i=j}^{n-1} p_{n-1,i}. \end{cases}$$

- Sequence A113227 has been studied by D. Callan (2010), and it is proved to count several families of objects:
  - marked valleys Dyck paths,
  - increasing ordered trees with increasing leaves,
  - permutations avoiding 1-23-4,
  - steady paths (equivalent to  $AV_n(1-34-2)$ ).

• Corteel, Martinez, Savage, Weselcouch (2016) proved that the number  $p_n = |I_n(110)|$  can be expressed as  $p_n = \sum_j p_{n,j}$ , where the terms  $p_{n,j}$  satisfy the recurrence relation

$$\begin{cases} p_{1,1} = 1, \\ p_{n,j} = p_{n-1,j-1} + j \sum_{i=j}^{n-1} p_{n-1,i}. \end{cases}$$

- Sequence A113227 has been studied by D. Callan (2010), and it is proved to count several families of objects:
  - marked valleys Dyck paths,
  - increasing ordered trees with increasing leaves,
  - permutations avoiding 1-23-4,
  - steady paths (equivalent to  $AV_n(1-34-2)$ ).

• Corteel, Martinez, Savage, Weselcouch (2016) proved that the number  $p_n = |I_n(110)|$  can be expressed as  $p_n = \sum_j p_{n,j}$ , where the terms  $p_{n,j}$  satisfy the recurrence relation

$$\begin{cases} p_{1,1} = 1, \\ p_{n,j} = p_{n-1,j-1} + j \sum_{i=j}^{n-1} p_{n-1,i}. \end{cases}$$

- Sequence A113227 has been studied by D. Callan (2010), and it is proved to count several families of objects:
  - marked valleys Dyck paths,
  - increasing ordered trees with increasing leaves,
  - permutations avoiding 1-23-4,
  - steady paths (equivalent to AV<sub>n</sub>(1-34-2)).

#### Proposition

 $I_n(110)$  grows according to the generating tree:

$$\Omega_{\ell} = \begin{cases} (2) \\ (h) \rightsquigarrow (1)(2)^2 \dots (h)^h (h+1) \end{cases}$$

#### Proof.

- To a sequence e ∈ l<sub>n</sub>(110) with h occurrences of 0 we assign the label (h).
- The ECO operator applied to *e* produces objects of size *n* + 1 as follows:
  - add 0 on the left of e and increase by 1 all nonzero entries, obtaining a sequence without 1s and label (h + 1);

(日) (日) (日) (日) (日) (日) (日)

#### Proposition

 $I_n(110)$  grows according to the generating tree:

$$\Omega_{\ell} = \begin{cases} (2) \\ (h) \rightsquigarrow (1)(2)^2 \dots (h)^h (h+1) \end{cases}$$

#### Proof.

- To a sequence e ∈ I<sub>n</sub>(110) with h occurrences of 0 we assign the label (h).
- The ECO operator applied to *e* produces objects of size n + 1 as follows:
  - add 0 on the left of e and increase by 1 all nonzero entries, obtaining a sequence wilbout 1s and label (h+1);

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Proposition

 $I_n(110)$  grows according to the generating tree:

$$\Omega_{\ell} = \begin{cases} (2) \\ (h) \rightsquigarrow (1)(2)^2 \dots (h)^h (h+1) \end{cases}$$

#### Proof.

- To a sequence e ∈ I<sub>n</sub>(110) with h occurrences of 0 we assign the label (h).
- The ECO operator applied to *e* produces objects of size *n* + 1 as follows:
  - add 0 on the left of e and increase by 1 all nonzero entries, obtaining a sequence without 1s and label (h + 1);

(日) (日) (日) (日) (日) (日) (日)

#### Proposition

 $I_n(110)$  grows according to the generating tree:

$$\Omega_{\ell} = \begin{cases} (2) \\ (h) \rightsquigarrow (1)(2)^2 \dots (h)^h (h+1) \end{cases}$$

#### Proof.

- To a sequence  $e \in I_n(110)$  with *h* occurrences of 0 we assign the label (*h*).
- The ECO operator applied to *e* produces objects of size *n* + 1 as follows:
  - add 0 on the left of *e* and increase by 1 all nonzero entries, obtaining a sequence without 1s and label (*h*+1);

For every j = 1, ..., h, the operator produces h - j + 1 objects with label (h - j + 1) as follows:

- All entries different from 0 increase by 1;
- The *j* 1 rightmost entries of 0 become 1;
- One of the h j + 1 remaining entries of 0 becomes 1 (there are h - j + 1 possible choices);
- Add 0 at the beginning.

Let e = 00120350403 with label (5), and let j = 2; we have 5-2+1 = 4 productions with label (4):

$$e = 00120350403$$

$$\downarrow$$

$$010230460514$$

$$001230460514$$

$$000231460514$$

$$000230461514$$

#### Proposition

 $I_n(110)$  grows according to the generating tree:

$$\Omega_{\ell} = \begin{cases} (2) \\ (h) \rightsquigarrow (1)(2)^2 \dots (h)^h (h+1) \end{cases}$$

It is a clear extension of

$$\Omega_{cat} = \begin{cases} (1) \\ (k) \rightsquigarrow (1)(2) \dots (k)(k+1) \end{cases}$$

but is not related to the other considered generating trees.Open Problems:

to find a growth of  $I_{
m e}(110)$  which extends that of

- $I_{n}(110,210);$

#### Proposition

 $I_n(110)$  grows according to the generating tree:

$$\Omega_{\ell} = \begin{cases} (2) \\ (h) \rightsquigarrow (1)(2)^2 \dots (h)^h (h+1) \end{cases}$$

It is a clear extension of

$$\Omega_{cat} = \begin{cases} (1) \\ (k) \rightsquigarrow (1)(2) \dots (k)(k+1) \end{cases}$$

but is not related to the other considered generating trees. Open Problems:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Proposition

 $I_n(110)$  grows according to the generating tree:

$$\Omega_{\ell} = \begin{cases} (2) \\ (h) \rightsquigarrow (1)(2)^2 \dots (h)^h (h+1) \end{cases}$$

It is a clear extension of

$$\Omega_{cat} = \begin{cases} (1) \\ (k) \rightsquigarrow (1)(2) \dots (k)(k+1) \end{cases}$$

but is not related to the other considered generating trees.
Open Problems:

- to find a growth of *l<sub>n</sub>*(110) which extends that of *l<sub>n</sub>*(110,210);

#### Proposition

 $I_n(110)$  grows according to the generating tree:

$$\Omega_{\ell} = \begin{cases} (2) \\ (h) \rightsquigarrow (1)(2)^2 \dots (h)^h (h+1) \end{cases}$$

It is a clear extension of

$$\Omega_{cat} = \begin{cases} (1) \\ (k) \rightsquigarrow (1)(2) \dots (k)(k+1) \end{cases}$$

but is not related to the other considered generating trees.Open Problems:

- to find a growth of  $I_n(110)$  which extends that of  $I_n(110, 210)$ ;

#### Proposition

 $I_n(110)$  grows according to the generating tree:

$$\Omega_{\ell} = \begin{cases} (2) \\ (h) \rightsquigarrow (1)(2)^2 \dots (h)^h (h+1) \end{cases}$$

It is a clear extension of

$$\Omega_{cat} = \begin{cases} (1) \\ (k) \rightsquigarrow (1)(2) \dots (k)(k+1) \end{cases}$$

but is not related to the other considered generating trees.Open Problems:

- to find a growth of  $I_n(110)$  which extends that of  $I_n(110, 210)$ ;
- to find a direct bijection between *I<sub>n</sub>*(110) and permutations avoiding 1-23-4.