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@ Ip(110): sequences with no i < j < k such that

€ = € > €.

01032463538

@ corresponds to the permutation 7 =96103841752.
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Inversion Sequences Avoiding Triples of Relations

@ Martinez and Savage generalized the notion of pattern
avoidance to a triple of binary relations (p1, p2, p3), where
pi € {<,>,<,>,=,#,—}, where — on a set S'is the
cartesian product, i.e. — = S x S.

@ In(p1, p2, p3) is the set of inversion sequences e of length n
with no / < j < k such that

€ip1€j, €jp2€k, €jp3Ek.

@ For example Iy(=,>,>) = I,(110).
@ All triples of relations of the set {<, >, <,>,=,#, —}3 are
studied in [Martinez, Savage 2016].

@ All 343 patterns are considered and partitioned in 98
equivalence classes. Several conjectures are formulated.
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@ ECO method (Enumeration of Combinatorial Objects) was
developed by some researchers of the Universities of
Florence and Sienna [Barcucci, Del Lungo, Pergola,
Pinzani 1999].

@ Let C be a combinatorial class, that is to say any set of
discrete objects equipped with a notion of size, such that
there is a finite number of objects C, of size n for any
integer n. Assume also that Cy contains exactly one object.

@ Afunction 9 : Cp — P(Cpy1) is an ECO operator if:

@ forany Oy, O, € Cp, we have 9(0O;) N Y(Os) = 0;
@ fonany O’ € Cp there is O € Cp, such that O’ € ¥(0).

@ Every object of size n+ 1 is uniquely obtained from an
object of size n through the application of ¥.
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Generating trees

@ The growth described by ¥ can be represented by means
of a generating tree: a rooted infinite tree whose vertices
are the objects of C. The objects having the same size lie
at the same level (the element of C; is at the root), and the
sons of an object are the objects it produces through .

@ If the recursive growth described by 1} is sufficiently regular,
then it can be described by means of a succession rule,
i.e. a system of the form:

{ (a)
(k) ~ (61)(62). . .(ek). ’

where (a), (k), (&) € N¥,

@ Succession rules (or generating trees) have been studied
by West (1995) and Banderier, Bousquet-Mélou, Denise,
Flajolet, Gardy, Gouyou-Beauchamps (2005).
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@ Non decreasing sequences /,(10): inversion sequences
suchthate; =0and e;;1 > e;.

@ Enumerated by Catalan numbers, C, = 15 (%).

@ Lete=e;...e,. The ECO operator adds the element e, 1
to e in all possible ways from e, to n. The sequence e is
labelled (n+ 1 — ep).

@) ) “ 3) @)

@ We obtain:
_ (2
Qcat = { (k) ~ (2)(3) ... (k)(k+ 1)
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@ We handle all these families in a unified way by providing:
e a (possible) combinatorial characterization
e arecursive growth by means of generating trees
e enumeration
@ possible connections with other combinatorial structures

@ We prove some results conjectured in [Martinez, Savage
2016].
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Aims of the paper

@ In this talk we focus on the families of the chain:

1,(000,110)
Bell sequence

1,(000,100,110,210)
sequence A108307

1,000,100,101,110,201,210) 100110210y || MO21000 40
Catalan sequence Baxter sequence sequence sequence A113227
1,(100,110,201,210)

Schroder sequence

@ The recursive construction (and the generating tree) of any
family is obtained as an extension of the construction (and
the generating tree) of a smaller one, starting from
/1»(000,100,110,101,201,210) (Catalan sequence).
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1,(000, 100,101,110,201,210): Catalan sequence

@ Let /%8 = [,(>,—,>) = I,(000,100,101,110,201,210).

@ Characterization: an inversion sequence
e=e;...epc [¢if and only if for any i we have: if
ei+1 < e; (weak descent) then ¢; > g; forall j > i+ 1.

@ In[Martinez, Savage 2016] is conjectured that /53 is
counted by Catalan numbers.
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Catalan sequence: a bijective proof

There is a bijective correspondence between sequences of 153
and non-crossing partitions of n.

@ A partition of [n] = {1,..., n} is a pairwise disjoint set of
non-empty subsets, called blocks, whose union is [n].

@ A noncrossing partition of [n] is a partition in which no two
blocks in the graphical representation "cross" each other.

1 2 3 4 5 6 1 1 2 3 4 5 6 7

{1.5,7} {2} (3.6} {4} (15,7} {2,4} {3} {6}

@ It is well-known that noncrossing partitions of [n] are
counted by Catalan numbers.
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Catalan sequence: a bijective proof

@ Consider the following noncrossing partition of n = 7:

(7N

0 1 2 3 4 5 6
@ We build the associated sequence in the following steps:

0123 456

OO OO0 OoOOo
OO0 = = =
- = = 2N

- = =2 N

L \C I \V)

N O
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A more general result

The previous construction establishes a bijection between
partitions of [n] (Bell numbers) and 1,(000,110).

@ Crossing partition: m

@ Gives:
01 2 3 456
0
0 1
01 2
01 2 3
001 2 3
0 02123 pattern 101
0 021 4 2 3 pattern 201
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A generic ECO operator for inversion sequences

Our general approach

@ Let C be a family of inversion sequences.

@ Let a sequence grow by adding an element x at the end of
e, and denote by e - x the sequence ey ... e, X.

@ Anelement x € {0,...,n}is activeif e;...epx € C.

@ Let h (resp. k) the number of active sites less than or equal
to (resp. greater than) e,

(3.2)
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I3t grows according to the generating tree:

(1,1)
Qear = { (h, k) ~ (0, k + 1)"
(h+k,1),...,(h+1,k).

X X X X[« <

/ .

0,2)

X X X X[< < X x X X[|< <
=
&8

KL LK X x X X[ <




@ This is a new generating tree for Catalan numbers.



@ This is a new generating tree for Catalan numbers.

@ Our goal is to make all the families in our scheme grow
with a growth which extends the one provided by Q¢ .



@ This is a new generating tree for Catalan numbers.

@ Our goal is to make all the families in our scheme grow
with a growth which extends the one provided by Q¢ .

Proposition

IS8t js the set of inversion sequences of AV(12-3,2-14-3),
which therefore turns out to be another family of permutations
counted by Catalan numbers.
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@ Characterization: inversion sequences that can be
uniquely decomposed in two strictly increasing sequences.
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1»(000, 100, 110,210) grows according to

(1,1)
Qa{ (h,k) ~ (0,k+1),....,(h—1,k+1)
(h+1,k),....,(h+k,1),
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Proposition

Let Spx(t) = Shx the gf of 1,(000,100,110,210) with label
(h,k), and S(t; u,v) = S(U, V) = > p, k>1 Shat"VK. Then:

tv(S(1,v) — S(u,v)) N tu(S(u,u) — S(u, v))

S(u,v) = tuv + Y ujv—1

Our “recipe” is as follows:

@ Apply some variants of the kernel method (obstinate kernel
method) developed in [M. Bousquet-Mélou, G. Xin, 2006]
and prove that the gf is D-finite;

@ The Lagrange inversion formula gives a rather complicated
formula for b, = |1,(000,100,110,210)|;

@ The creative telescoping [M. Petkovsek, H.S. Wilf, D.
Zeilberger, 1996] to obtain a recursive formula for by,.
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The numbers b, = |1,(000, 100, 110,210)| satisfy the following
polynomial recurrence relation:

8(n+3)(n+2)(n+1)b, + (n+2)(15n% + 133n + 280) by 1 +
(9212 + 6n° 4 464n + 776) bpyo — (N+9)(N+8)(N+6) byyz = 0.

First terms of the sequence:
1,2,5,15,51,191,772,3320, 15032,71084,348889, 1768483, . ..
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1,(000,100,110,210): other combinatorial

interpretations

@ Martinez, Savage (2016) conjectured that {b,} >0 is
sequence A108307 in The Online Encyclopedia of Integer
Sequences.

@ This sequence counts partitions avoiding enhanced
3-nestings (or crossings).

NITN

@ M. Bousquet-Mélou, G. Xin (2006) proved that the number
an of partitions avoiding enhanced 3-nestings of size n
satisfies:

8(n+3)(n+2)(n+1)a, + 3(n+2)(5m +47n+104)ap 1 +
3(n+4)2n+11)(n+7)ani2 — (n+9)(n+8)(n+7)ani3 = 0.
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1,(000, 100, 110,210): combinatorial objects

For all n > 1 we have that a, = by,.
Then 1,(000, 100, 110,210) is counted by sequence A108307.

@ Sequence A108307 counts also inversion sequences such

that:
e1 =0,
0 S (=) S 17

en <max{e,_1,ep 2} + 1.

@ Find a bijective proof between these sequences and
1»(000,100,110,210).
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In(100,110,210) grows according to

(1,1)
Qbax{ (hk) ~ (1,k+1),....(h—1,k+1),(1,k+1)
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(100, 110,210): explicit formula

@ Martinez, Savage (2016) conjectured that /,(100,110,210)
is counted by the Baxter numbers.

@ The generating tree Q4 is not known in the literature.

@ In order to prove this conjecture we have solved the
functional equation arising from Qy4x, applying the “recipe”.

The number of inversion sequences in I,(100,110,210) is

2 %05 (0 () G2+
Zp =0 {Zk =0 (Z) knp) (n+p K+1

)
—2 {Zk 0 ( ) (knp) (n+p k+2) +
{Zk:o( ) (k p) (n+p k+3) B(n+pnk 3)] .
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I,(100,110,210): Baxter numbers?

@ We have not been able to prove that our formula gives
Baxter numbers, defined by:

By = n+1 22</—1>< 1><7i11>

although we have checked that the two sequences
coincide for a huge amount of terms.

@ We have not been able to find a growth of any Baxter
object according to Qpay-

Solved by Dongsu Kim and Zhicong Lin (poster at FPSAC
2017).
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@ Let us consider I,(>,>,>) = In(110,210).

@ Characterization: inversion sequences such that for every
inversion (e;, ;) we have that e; is a left-to-right maximum.

@ Martinez, Savage (2016) conjectured it to be counted by
the sequence of semi-Baxter numbers.
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Semi-Baxter permutations

Semi-Baxter permutations = AV,(2-41-3) (recall that Baxter
permutations = AV,(2-41-3, 3-14-2)).

Bouvel, Guerrini, Rechnitzer, R., (2016) studied semi-Baxter
permutations:

@ generating tree for semi-Baxter permutations:

(1,1)
Qsemi: { (h,k)“’"(1,k+1),,(h,k+1)
(h+k,1),...,(h+1,k).

@ semi-Baxter numbers sb, satisfy, for n > 2,
11 +11n—6 (n—3)(n—2)
sb, = sb,_ A S —
" i a)nt3) o T (nr &) (nta)
@ explicit formula (suggested by D. Bevan):

b= - 1)n2(,27‘i1)(n+2) j:'o (/:2) (n;@) <”I+JJFJ1F2>

n—2-




I(110,210): generating tree

I(110,210) grows according to

(1,1)
Qsem,-{ (hyk) ~(1,k+1),....,(hyk+1)
(h+k,1),...,(h+1,k).



I(110,210): generating tree

In(110,210) grows according to

(1,1)
Qsemi{ (h,k)“")(‘l,k—i-"),,(h,k—f—‘l)
(h+k,1),...,(h+1,k).

<]« <

X X
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@ We consider In(110) = In(=, >, >).

@ Characterization: inversion sequences such that g; is
greater than or equal to the maximum among the elements
which occur at least twice (if any) on its left.
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I(110): sequence A113227

@ Corteel, Martinez, Savage, Weselcouch (2016) proved that
the number p, = |/,(110)| can be expressed as
pn = Zj pnj, Where the terms p, ; satisfy the recurrence
relation
pia=1,
Pnj = Pn-1j-1 +f27;/1 Pn—1,i -

Thus, {pn}n>0 is sequence A113227 in OEIS.
@ Sequence A113227 has been studied by D. Callan (2010),
and it is proved to count several families of objects:
e marked valleys Dyck paths,
e increasing ordered trees with increasing leaves,
e permutations avoiding 1-23-4,
e steady paths (equivalent to AV,,(1-34-2)).
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In(110) grows according to the generating tree:

@
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I,(110): generating tree

In(110) grows according to the generating tree:

@
= ‘{ () ~ (1)@ (h)(h+1)

Proof.

@ To a sequence e € I(110) with h occurrences of 0 we
assign the label (h).

@ The ECO operator applied to e produces objects of size
n—+1 as follows:

e add 0 on the left of e and increase by 1 all nonzero entries,
obtaining a sequence without 1s and label (h+ 1);



I,(110): generating tree

Forevery j=1,..., h, the operator produces h — j + 1 objects
with label (h—j+ 1) as follows:

@ All entries different from 0 increase by 1;

@ The j — 1 rightmost entries of 0 become 1;

@ One of the h— j + 1 remaining entries of 0 becomes 1
(there are h — j + 1 possible choices);

@ Add 0 at the beginning.

Lete=00120350403 with label (5), and let j = 2; we have
5 — 2+ 1 = 4 productions with label (4):

e= 00120350403
!
010230460514
001230460514
000231460514
000230461514
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I,(110): generating tree

In(110) grows according to the generating tree:

_[ @
2 = { (h) ~ (1)(2)2...(h)"(h+1)
@ ltis a clear extension of

9o ()
ca (k) ~ (1)(2)...(K)(k+1)
but is not related to the other considered generating trees.
@ Open Problems:
e to find a growth of /,(110) which extends that of
In(110,210);
e to find a direct bijection between /,(110) and permutations
avoiding 1-23-4.
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