

Characterising inflations of monotone grid classes of permutations

Robert Brignall Nicolasson

Joint work wið Michæl Albert and Aistis Atminas

Reykjavik, 29b June 2017

Enumeration

Structure

Characterisation

Finitely many simple permutations

Theorem (Albert & Atkinson, 2005): Any permutation class containing only finitely many simple permutations has an algebraic generating function.

(Geometric) griddability

Theorem (Albert, Atkinson, Bouvel, Ruškuc & Vatter, 2013): Any permutation class that is geometrically griddable has a rational generating function.

Enumeration

Structure

Characterisation

Finitely many simple permutations

Theorem (Albert & Atkinson, 2005): Any permutation class containing only finitely many simple permutations is finitely based and well-quasi-ordered.

(Geometric) griddability

Theorem (Albert, Atkinson, Bouvel, Ruškuc & Vatter, 2013): Any permutation class that is geometrically griddable is finitely based and well-quasi-ordered.

Enumeration

Structure

Characterisation

Finitely many simple permutations

B., Huczynska & Vatter, 2008: Characterisation of simples, giving... **Theorem (B., Ruškuc & Vatter, 2008):** It is decidable whether a permutation class contains only finitely many simple permutations.

Bassino, Bouvel, Pierrot & Rossin, 2015: Efficient algorithm.

(Geometric) griddability

Theorem (Huczynska & Vatter, 2006): A permutation class is geometrically griddable if and only if it avoids long sums of 21 and skew sums of 12.

N.B. Reinstating 'geometrically' into the above seems hard!

Theorem (Albert, Ruškuc & Vatter, 2015)

Any permutation class containing only geometrically griddable simples has an algebraic generating function, is finitely based, and is well-quasi-ordered.

• Related to this: Every class with growth rate $< \kappa \approx 2.20557...$ has a rational generating function.

Theorem (Albert, Ruškuc & Vatter, 2015)

Any permutation class containing only geometrically griddable simples has an algebraic generating function, is finitely based, and is well-quasi-ordered.

- Related to this: Every class with growth rate $< \kappa \approx 2.20557...$ has a rational generating function.
- Today: when are the simple permutations in a class geometrically griddable?
- Equivalently: what are the 'minimal simple obstructions' to griddability?
- As before, reinstating 'geometrically' is out of range.

A permutation class C is deflatable if its simple permutations belong to a proper subclass $D \subsetneq C$.

Albert, Atkinson, Homberger, Pantone (2016).

You want a definition of simple?

None of these (except trivial).

• Mumble mumble ... chopping permutations up ... monotone cells ... mumble mumble.

he Oper Iniversity

- Mumble mumble ... chopping permutations up ... monotone cells ... mumble mumble.
- Actually, you don't need to know. All you need is this:

- Mumble mumble ... chopping permutations up ... monotone cells ... mumble mumble.
- Actually, you don't need to know. All you need is this:

Theorem (Huczynska & Vatter, 2006)

A class C is griddable if and only if it avoids long sums of 21 and skew sums of 12.

- Mumble mumble ... chopping permutations up ... monotone cells ... mumble mumble.
- Actually, you don't need to know. All you need is this:

Theorem (Huczynska & Vatter, 2006)

A class C is griddable if and only if it avoids long sums of 21 and skew sums of 12.

• Easy-to-check: Av(*B*) is griddable if and only if there exist $\beta, \gamma \in B$ such that:

The same thing holds (obviously) for simple permutations:

Proposition (Essentially Huczynska & Vatter)

The simple permutations in a class C are griddable if and only if they avoid long sums of 21 and skew sums of 12.

• Not easy-to-check: *C* can contain long sums of 21 without the simples doing so.

The same thing holds (obviously) for simple permutations:

Proposition (Essentially Huczynska & Vatter)

The simple permutations in a class C are griddable if and only if they avoid long sums of 21 and skew sums of 12.

Theorem (Albert, Atminas & B., 2017+)

The simple permutations in a class C are griddable if and only if C does not contain the following structures, or their symmetries:

- arbitrarily long parallel sawtooth alternations,
- arbitrarily long sliced wedge sawtooth alternations,
- proper pin sequences with arbitrarily many turns, and
- spiral proper pin sequences with arbitrarily many extensions.

The Open University

Theorem

The Open University

Theorem

The Open

Theorem

- Large wedge sawtooth *inside* a simple.
- Form a 'pin sequence'.
- Jump too far: sliced wedge sawtooth.
- Otherwise: long pin sequence.

- Large wedge sawtooth *inside* a simple.
- Form a 'pin sequence'.
- Jump too far: sliced wedge sawtooth.
- Otherwise: long pin sequence.

- Large wedge sawtooth *inside* a simple.
- Form a 'pin sequence'.
- Jump too far: sliced wedge sawtooth.
- Otherwise: long pin sequence.

- Large wedge sawtooth *inside* a simple.
- Form a 'pin sequence'.
- Jump too far: sliced wedge sawtooth.
- Otherwise: long pin sequence.

- Large wedge sawtooth *inside* a simple.
- Form a 'pin sequence'.
- Jump too far: sliced wedge sawtooth.
- Otherwise: long pin sequence.

- Large wedge sawtooth *inside* a simple.
- Form a 'pin sequence'.
- Jump too far: sliced wedge sawtooth.
- Otherwise: long pin sequence.

- Large wedge sawtooth *inside* a simple.
- Form a 'pin sequence'.
- Jump too far: sliced wedge sawtooth.
- Otherwise: long pin sequence.

- Large wedge sawtooth *inside* a simple.
- Form a 'pin sequence'.
- Jump too far: sliced wedge sawtooth.
- Otherwise: long pin sequence.

- Large wedge sawtooth *inside* a simple.
- Form a 'pin sequence'.
- Jump too far: sliced wedge sawtooth.
- Otherwise: long pin sequence.

- If a pin sequence 'turns' lots, we're happy.
- No turns = spiral pin sequences.
- Use wedge sawtooth to find 'extensions'.

- If a pin sequence 'turns' lots, we're happy.
- No turns = spiral pin sequences.
- Use wedge sawtooth to find 'extensions'.

- If a pin sequence 'turns' lots, we're happy.
- No turns = spiral pin sequences.
- Use wedge sawtooth to find 'extensions'.

And so...

Theorem (I've already shown you this)

Theorem (I've already shown you this)

There exists a function f(n) such that every simple permutation that contains a sum of f(n) copies of 21 must contain a parallel or wedge sawtooth alternation of length 3n or an increasing oscillation of length n.

Proposition

Whenever a simple permutation contains a long wedge sawtooth alternation, then it contains a long split wedge sawtooth alternation, a proper pin sequence with many turns, or a spiral pin sequence with many extensions.

- Q: Is this a decision procedure?
 A: Not quite, but it can probably be turned into one.
- 'Geometrically griddable' largely remains a remote goal (both for simple and generic permutations)

Takk!

Full paper: arXiv:1702.04269.