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/0 Common observation:

ol
5.
6/4 Large random objects
2 tend to look alike.
Common problem:
What do they
look like?

Common approach:

Count them and
take limits.




Today's large random objects:

permutations of {1,..,n} for large n
(or those with some given property).

What sort of "gross” property do we
care about for large permutations?

Perhaps pattern densities?

Pattern density p_(o) :=
# occurrences in o of the pattern m,
divided by ()



A permuton is a probability measure on [0,1]° with uniform marginals
(AKA doubly-stochastic measure, or two-dimensional copula).
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Every permutation o provides a corresponding permuton y(o).



“urban” permuton y(o) for

. uniform permuton
a r'andom OIn SIOOO f m p m

A sequence of permutations converges if their permutons
converge in distribution, i.e., their CDF's converge pointwise.

The CDF of v is G(x.y) := v([0,x]x[0,y]).



To each permuton v is associated a probability measure y, on S

1. Pick ni.i.d. points fromy
2. Sort them by x-coordinate

3. Record the permutation given
by the y-coordinates.
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Permutons for some naturally arising measures

Take n-1 steps of a random walk on the real line
With symmetric, continuous step distribution, and
let 7, be the induced permutation on values.




Permutons that conjecturally describe permutations
encountered at stages of a random sorting network:




A singular permuton

(in this case: a 1324-avoiding graphical grid class)



The density of a pattern m of length k in a permuton vy
is just v, (m).

For example, the 21-density, AKA the inversion density of v, is
20 wx g 9(UV)g(x.y) du dx dv dy

provided v is lucky enough to have a density g.

Although p(0) is not exactly equal to p(y(0)),

Thm [Hoppen, Kohayakawa, Moreira, Rath & Sampaio '13]:

(1) A permuton is determined by its pattern densities;

(2) Permutons are the completion of permutations
in the (metric) pattern-density topology.



We wish to study subsets of S,, of size
nlecn, that is, enlogn-n+cn.

where c is some non-positive constant.

Example: Permutations with one or more
pattern densities fixed.

But: If one of those densities is O,
we know from the Marcus/Tardos ‘04 proof
of the Stanley-Wilf conjecture that the
class is "only” exponential in size.



The entropy of vy, is

ent(y,) = 2 -vu(T) log y,(m)
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Example: the entropy of the uniform distribution on S, is log nl.

Definition: the permuton entropy is
H(v) := lim 2 (ent(v,) - log n!)

n->o0

Thm: H(y) = J J-9(x.y) log g(x,y) dx dy

with H(y) = -©° if g log g is not integrable or y has no density.



Sample entropies

H=0

Permuton entropy is never positive,
and = O only for the uniform measure.

H

-logh



Large deviations principle:

(various versions and proofs due to
Trashorras ‘08, Mukherjee ‘15, and KKRW ‘15.)

Thm: Let A be a "nice" set of permutons, with
Ay = {TeS,, : y(m)eA}. Then

lim +log(|A,1/nt) = sup H(y).

n->oo YEA

Variational principle:

To describe and count permutations with
given properties (e.g., with certain fixed
pattern densities), find the permuton with
those properties that maximizes entropy.



Example: Fix the density p of the pattern 12.

There are lots of permutons with density p of the pattern 12,
but there’s a unique one i, of maximum entropy.

A uniformly random permutation of {1,..,n} with
density p of the pattern 12 will "look like" p;
for large n (i.e., its permuton will be close to ) ).



Permutons with fixed 12 density
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Our LDP proof: mostly analysis.

One bit of combinatorics:

Baranyai's Lemma: The entries of any real matrix with integer
row and column sums can be rounded to integers in such a way
that the row and column sums are preserved.
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Used to construct permutations that
approximate a permuton with given density.



Our “inserton” approach, applied to finding the permuton
for fixed 12-density:

Build random permutation inductively---for each i, insert i
somewhere into the current permutation of 1,2,...,i-1.

Note that if i is inserted into the j th position,
we get j-1 more 12 patterns.

Mimic this process continuously,
letting f;(y)dy be the insertion density at time t.

Lemma. The entropy of the permuton with insertion measures fi(y)dy is

Hv) = JJ - fily) log(tfy(y)) dy dft.



Let I;,(t) be the number of 12 patterns after time t.
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Then I';5(t) is the mean insertion location at time t.

To maximize H(y) for fixed p = I;5(1),

1. Take f; to be a truncated exponential
(maximizing its entropy for fixed mean);

2. Take I';5(t) = const (so all f; have same rate).



Fix densities of 12 and 1xx (= 123 + 132):
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0.5

Concavity of the entropy function helps make this space solvable.



In dealing with other short patterns:

Thm: The maximizing permutons for any patterns of
length 2 or 3 satisfy a PDE of the form

(log Gyy)xy *P1(266yy + 645y ) + P = O

CONTRAST:
Entropy-maximizing
graphons are

- Rl not analyticl

(see work of
Radin, Sadun +.)

Proof idea:

Move mass around respecting marginals,
so as (for example) to increase H(y) + Pp123(Y).
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Some of the (many) open questions:

Q1: Does every interior point of a feasibility region
represent a large set of permutations (i.e., must it
have a permuton of finite entropy?)

Q2: Does every entropy-maximizing permuton have an
analytic density function?

Q3: What can be learned about avoidance classes by
looking at limits of entropy-maximizing permutons as
you approach the boundary of a feasibility region?

Q4: We know that for any single fixed pattern m, the
entropy of the permuton whose m-density is p is
unimodal in p. But we haven't proved it's continuous!



Thank you!



