Splittability and 1-Amalgamability of Permutation Classes

Michal Opler

Computer Science Institute of Charles University in Prague

Permutation Patterns June 29, 2017

Joint work with Vít Jelínek

Merges

Definition

Permutation π is a merge of permutations σ and τ if the elements of π can be colored red and blue, so that the red elements are a copy of σ and the blue ones of τ .

One possible merge of 132 and 321 is 624531.

Definition

For two sets *P* and *Q* of permutations, let $P \odot Q$ be the set of permutations obtained by merging a $\sigma \in P$ with a $\tau \in Q$.

Definition

A permutation class C is splittable if it has two proper subclasses A and B such that $C \subseteq A \odot B$. Otherwise we say that C is unsplittable.

Facts:

- If σ is a simple permutation, then $Av(\sigma)$ is an unsplittable class.
- If σ is a decomposable permutation other than 12, 213 or 132, then $Av(\sigma)$ is a splittable class.

Amalgamation

Definition

Let σ_1 and σ_2 be two permutations, each having a prescribed occurrence of a permutation π . An amalgamation of σ_1 and σ_2 is a permutation obtained from σ_1 and σ_2 by identifying the two prescribed occurrences of π (and possibly identifying some more elements as well).

One possible 132-amalgamation of 2413 and 2431 is the permutation 35142.

Definition

A permutation class C is

- π-amalgamable if for any two permutations σ₁, σ₂ ∈ C and any prescribed occurrences of π in σ₁ and σ₂, there is an amalgamation of σ₁ and σ₂ in C.
- amalgamable if it is π -amalgamable for every $\pi \in C$.
- *k*-amalgamable if it is π -amalgamable for every $\pi \in C$ of length at most *k*.

Theorem (Cameron, 2002)

There are only 5 nontrivial amalgamable classes - Av(12), Av(21), Av(231, 213), Av(132, 213) and the class of all permutations.

Fact: If a permutation class C is unsplittable, then C is also 1-amalgamable.

Questions

- Is there a splittable 1-amalgamable class?
- Are there infinitely many such classes?

Main result: Av(1342, 1423) is both splittable and 1-amalgamable.

LR-inflations

Definition

For permutation π with k left-to-right minima and $\sigma_1, \ldots, \sigma_k$ non-empty permutations, the LR-inflation of π by the sequence $\sigma_1, \ldots, \sigma_k$ is the inflation of LR-minima of π by $\sigma_1, \ldots, \sigma_k$.

An example of LR-inflation: $2413\langle 213, 21\rangle = 4357216$.

Michal Opler

Definition

A permutation class *C* is closed under LR-inflations if for every $\pi \in C$ and for every *k*-tuple $\sigma_1, \ldots, \sigma_k$ of permutations from *C*, the LR-inflation $\pi \langle \sigma_1, \ldots, \sigma_k \rangle$ belongs to *C*. The closure of *C* under LR-inflations, denoted C^{LR} , is the smallest class which contains *C* and is closed under LR-inflations.

Our plan:

- Show that Av(1342, 1423) is in fact the LR-closure of Av(123).
- Find properties of a permutation class C that imply splittability and 1-amalgamability of C^{LR} .
- Show that Av(123) has these properties.

Sketch of proof:

- Any $\pi \in Av(123)^{\text{\tiny LR}}$ avoids both 1342 and 1423.
- For $\pi \in Av(1342, 1423)$:
 - Consider the right-to-left maxima of π .
 - π does not contain 132 with only one of the letters mapped to a RL-maximum.

Occurrence of 132 with only the letter 3 mapped to RL-maximum forces 1423.

Sketch of proof:

- For $\pi \in Av(1342, 1423)$:
 - Split other elements of π into grid defined by the RL-maxima.
 - Show that non-empty sets create a descending sequence of intervals.
 - π is an LR-inflation of 123-avoiding permutation with shorter permutations.

Definition

Permutation π is a LR-merge of permutations σ and τ if the elements of π that are not LR-minima can be colored red and blue, so that the red elements together with LR-minima are a copy of σ and the blue ones of τ .

One possible LR-merge of 45213 and 3214 is 462153.

Definition

For two sets P and Q of permutations, let $P \odot_{LR} Q$ be the set of permutations obtained by LR-merging a $\sigma \in P$ with a $\tau \in Q$.

Definition

A permutation class *C* is LR-splittable if it has two proper subclasses *A* and *B* such that $C \subseteq A \odot_{LR} B$.

Observation: LR-splittability \Rightarrow splittability.

Proposition (Tool #1)

For C, D and E permutation classes, $C \subseteq D \odot_{LR} E \Rightarrow C^{LR} \subseteq D^{LR} \odot_{LR} E^{LR}$.

Lemma

Av(123) is LR-splittable.

Constructing a coloring of $\pi \in Av(123)$:

- π is a merge of two descending sequences, LR-minima and the remaining elements.
- We split the non-minimal elements into consecutive runs with a greedy algorithm.
- Finally, every odd run is colored blue and every even run red.

Example of coloring a 123-avoiding permutation.

Example of coloring a 123-avoiding permutation.

Observation: Two elements from different runs of the same color do not share any LR-minima.

Lemma

Av(123) is LR-splittable.

Corollary

Av(1342, 1423) is splittable.

LR-amalgamation

Definition

Let σ_1 and σ_2 be two permutations, each having a prescribed occurrence of a permutation π that does not use any LR-minima. An LR-amalgamation of σ_1 and σ_2 is an amalgamation σ_1 and σ_2 that preserves the property of being a LR-minimum.

Two different 1-amalgamations of 132 and 213, only the left one is a LR-amalgamation.

Definition

A permutation class *C* is LR-amalgamable if for any two permutations $\sigma_1, \sigma_2 \in C$ and any prescribed occurrence of 1 in σ_1 and σ_2 , there is an LR-amalgamation of σ_1 and σ_2 in *C*.

Proposition (Tool #2)

If a permutation class C is LR-amalgamable then its LR-closure C^{LR} is LR-amalgamable and thus also 1-amalgamable.

Proposition (Waton, 2007)

The class of permutations that can be drawn on any two parallel lines of negative slope is Av(123).

Lemma

The class Av(123) is LR-amalgamable.

Possible LR-amalgamation of 3142 and 231 is the permutation 532614.

Corollary

Av(1342, 1423) is both 1-amalgamable and splittable, which shows that 1-amalgamability \neq splittability.

Question

Are there infinitely many 1-amalgamable and splittable classes?

Observation: An element π_i is LR-minimum \Leftrightarrow there is no occurrence of 12 that maps 2 on π_i .

- It is possible to generalize the notions of LR-amalgamability and LR-splittability for elements that are not a specific letter in an occurrence of some permutation σ.
- Maybe that could help find infinitely many 1-amalgamable and splittable classes.

Thank you for your attention!