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Introduction

In 2015, Yakoubov introduced an extensive new family of
permutation enumeration problems.

To state the most general of these problems, suppose n is a positive
integer, ⇑ is a partial order on [n], and σ1, . . . , σk are permutations.
Then Yakoubov’s problem is to determine how many permutations π
of [n] avoid σ1, . . . , σk and also have the property that if π(i) ⇑ π(j)
then i < j. In other words, how many linear extensions of the poset
([n],⇑) avoid σ1, . . . , σk?
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Introduction

If ⇑ is empty (meaning no two elements of [n] are related by ⇑) then
Yakoubov’s question reduces to the problem of enumerating the
permutations avoiding a given set of patterns.

Yakoubov obtains simple closed formulas for the number of linear
extensions of posets she calls combs which avoid various sets of
patterns of length three.
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Figure 1: The Hasse diagrams of a comb of type α (left) and β (right).
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In this work we extend Yakoubov’s investigation by studying pattern
avoiding linear extensions of rectangular posets.

• Notation
• Reduce the scope
• Some results
• q - analogues
• Some conjectures
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Background and Notation

For example, if P is the poset whose Hasse diagram is given in Figure
2, then P has four linear extensions: 25413, 25431, 52413, and 52431.
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Figure 2: The Hasse diagram of a poset on [5].
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Figure 3: The Hasse diagram of the rectangular poset EN4,3.

We write s to denote the number of elements in each spine.
We write t to denote the number of elements in each tooth.
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We write s to denote the number of elements in each spine.
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Figure 4: The Hasse diagram of the rectangular poset SW2,4.

Good news: we need only concern ourselves with two of them.
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As a result of these observations, we see we can restrict our
attention to ENs,t(σ1, . . . , σn) and NEs,t(σ1, . . . , σn).

In addition to reducing the collection of posets we need to consider,
we can also reduce the collection of forbidden patterns we need to
consider using the standard reverse complement map.
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Before we do this, it’s natural to ask what happens when there are
no patterns to avoid. That is, how many linear extensions of ENs,t
and NEs,t are there?
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The classical hook length formula for the number of standard
tableaux of an arbitrary partition shape gives us the following result.

Proposition

For any positive integers s and t, the number of linear extensions of

ENs,t (or NEs,t) is (st)!
t∏
j=1

(s+ t− j)!
(j− 1)! .

10



Since the Catalan numbers are so ubiquitous, it’s worth noting their
appearance in a special case of Proposition 1.

Corollary

For any positive integer n, the number of linear extensions of any of

ENn,2, NEn,2 EN2,n, or NE2,n is the Catalan number Cn =
1

n+ 1

(
2n
n

)
.
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Results

Patterns of length 3:

• |ENs,t(213)| = |NEs,t(312)| = 1
• |ENa,2(123)| = |EN2,a(321)| = Ca
• |NEs,t(213)| = ts−1

• |NEs,t(213, 132) = 2s−1
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|NEs,t(123)|

s \ t 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 2 5 14 42 132
3 1 5 33 234 1706 12618
4 1 14 238 4146 72152 1246804
5 1 42 1782 75187 3099106
6 1 132 13593 1378668
7 1 429 104756 25430445

Table 1: |NEs,t(123)| for small s and t.
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Patterns of length 4

Theorem
For all s, t ≥ 1,

|ENs,t(1243)| =
1

(t− 1)s+ 1

(
st
s

)
.
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|ENs,t(1243)|

For all s ≥ 0 and all t ≥ 2, a t-Fuss-Catalan path of semilength s is a
lattice path consisting of s unit East and (t− 1)s unit North steps,
with the property that each initial string of steps includes at least
t− 1 times as many Ns as Es. Equivalently, a t-Fuss-Catalan path
must remain on or above the line y = (t− 1)x.
Note that the 2-Fuss-Catalan paths are the classical Catalan paths.
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Figure 5: The 4-Fuss-Catalan path NNNENENNNENE and the line y = 2x.
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q-analogues

Finally, we extend Yakoubov’s work in another direction, studying the
distribution of the inversion number on pattern avoiding linear
extensions of our rectangular posets.

Definition
For any rectangular poset P and any pattern σ, let P(σ)(q) be the
generating function given by

P(σ)(q) =
∑

π∈P(σ)

qinv(π).

Also let [n]q = 1+ q+ q2 + . . .+ qn−1 for n ≥ 1.
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Theorem

For all s ≥ 1 and all t ≥ 1,

NEs,t(213)(q) = qs(
t
2)+t(

s
2)+

(s−1)(t−1)(st−2)
2 [t]s−1q .

For ENs,t(1243), we give the range of possible inversion numbers.
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s \ t 1 2 3 4 5 6
1 0 0 0 0 0 0
2 1 3-4 7-9 13-16 21-25 31-36
3 3 9-12 21-27 39-48 63-75 93-108
4 6 18-24 42-54 78-96 126-150 196-216
5 10 30-40 70-90 130-160 210-250 310-360
6 15 45-60 105-135 195-240 315-375 465-540

Table 2: The range of inversion numbers (minimum-maximum) for linear
extensions of ENs,t(1243).
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Theorem

For any positive integers s and t, the inversion numbers of the linear
extensions of ENs,t which avoid 1243 have minimum (t2 − t+ 1)

(s
2
)

and maximum t2
(s
2
)
.
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Conjectures

We have found that the following conjecture holds for t ≤ 9.

Conjecture
For all t ≥ 1,

EN3,2t−1(1243)(q) = q3(t
2−t+1)[2t− 1]q[4t− 1]q.

22



Conjecture

For all s ≥ 1,
ENs,3(2143)(q) = q9(

s
2)fs

(
1
q

)
,

where fs(q) is defined by f0(q) = 1, f1(q) = 1, and
fs(q) = (1+ q+ 2q2)fs−1(q) + q3fs−2(q) for s ≥ 2.

23



Conjectures about fs(q)

• For all s ≥ 2, the coefficient of q3 in fs(q) is the binomial
transform of the sequence obtained by interleaving n+ 1 and
2n+ 1. This is OEIS sequence A098156.

• For all s ≥ 2, the coefficient of q2s−2 in fs(q) the number of
compositions of s+ 9 into s parts, none of which is 2 or 3. This is
OEIS sequence A134465.

• For all s ≥ 2, the coefficient of qs+2 in fs(q) is the number of
jumps in all binary trees with s edges. This is OEIS sequence
A127531.

• For all s ≥ 2, the coefficient of qs in fs(q) is given by OEIS
sequence A072547.

• For all s ≥ 2, the coefficient of qs+1 in fs(q) is
(2s+1
s−1

)
.

• For all s ≥ 2, the coefficient of qs−1 in fs(q) is the number of
hill-free Dyck paths of semilength s. This is OEIS sequence
A116914.

• For all s ≥ 0, the sequence of coefficients of fs(q) is unimodal.
24



Other q-analogues

Let cn(q) denote the polynomial given by

cn(q) =
∑

π∈CWn

qmaj(π),

where the sum on the right is over all Catalan words of length 2n.
With this notation we have the following conjecture, which we have
verified for s ≤ 9 and t ≤ 9.

Conjecture
For all s ≥ 1 and all t ≥ 1,

• EN2,t(321)[q] = qtct(q);

• ENs,2(123)[q] = q2(
s
2)cs(q);

• NEs,2(123)[q] = qs2cs(q);
• NE2,t(123)[q] = qt2ct(q).

25



The paper is on the arXiv, and will appear in the Journal of
Combinatorics.

Thanks!
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