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The genome rearrangement problem

The genome rearrangement problem

Given a set of rearrangement events, find (and describe) an optimal
scenario transforming one genome to another via these rearrangement
events.

Here optimal refers to the fact that, in view of the parsimony principle,
the sequence of rearrangements to transform one genome into another is
required to have minimum cost.

Depending on the models, this often allow to introduce a notion of
distance between two genomes, by counting the number of elementary
operations needed to transform one genome into the other.

Main goal: study properties of these distances.
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The genome rearrangement problem

Genomes and permutations

A proper formalization of the genome rearrangement problem usually
consists of

I representing genomes as permutations;

I representing rearrangements using suitable combinatorial operations
on the entries of the related permutation.

For biological reasons, several models have been proposed, corresponding
to several sets of combinatorial operations on permutations. Among
them:

I the reversal model: 37 1942 685 37 2491 685;

I the tandem duplication-random loss model:

37 1942 685 37 1 6 9 6 426 194 6 2 685 37 1294 685;

I the transposition model: 37 1942 68 5 37 68 1942 5.
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The genome rearrangement problem

General problems

Given permutations ρ, σ, define d(ρ, σ) as the minimum number of
elementary operations needed to transform ρ into σ in the chosen model.

If we are lucky, d is a distance.

If we are luckier, d is left-invariant, which implies that computing d is
equivalent to sorting permutations using the minimum number of allowed
operations.
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The genome rearrangement problem

General problems

For d left-invariant distance on Sn, define

B
(d)
k (n) = {ρ ∈ Sn | d(ρ, idn) ≤ k}.

Main questions:

I compute the diameter of B
(d)
k (n);

I compute the diameter of Sn;

I characterize the permutations of B
(d)
k (n) having maximum distance

from the identity;

I characterize the permutations of Sn having maximum distance from
the identity;

I characterize and enumerate the permutations of B
(d)
k (n);

I design sorting algorithms and study the related complexity issues.
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Genome rearrangement and pattern avoidance

The case of the tandem duplication-random loss model

As a matter of fact, in several cases B
(d)
k =

⋃
n≥0 B

(d)
k (n) is a

permutation class; as such, it can be characterized in terms of pattern
avoidance.

This has been done, for instance, for the whole duplication-random loss
model by Bouvel and Rossin [2009].

Subsequent works by Bouvel and Pergola [2010], Mansour and Yan
[2010], Chen, Gu and Ma [2011], Bouvel and F. [2013] explored
properties of the bases of the related permutation classes, in particular
concerning the enumeration of such bases.

We suggest that a systematic investigation of the evolution models of
genomes using the permutation pattern paradigm would be very
interesting to be carried out. Here we just scratch the surface of a single
case, which is the classical transposition model.
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The transposition model

Transposition model and pattern avoidance

Proposition
Given π ∈ Sn and σ ∈ Sm, if σ ≤ π then dt(σ) ≤ dt(π). As a
consequence, if Bk = {π | dt(π) ≤ k} is the ball of radius k, then Bk is a
class of pattern avoiding permutations, for all k.

Main goals:

I investigate the structure of the permutations of Bk ;

I characterize Bk as a permutation class.
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The transposition model

Some notations

A strip of π = π1π2 · · ·πn ∈ Sn is a maximal consecutive substring
πi · · ·πi+k−1 such that, for all j = i , . . . i + k − 2, πj+1 = πj + 1.
Every permutation can be factored into strips: 12567834.

A permutation π is said to be reduced when, for all i = 1, . . . , n − 1,
πi+1 6= πi + 1. In other words, π is a reduced permutation when it does
not have points that are adjacent both in positions and values, i.e. all of
its strips have length 1.

red(π): (unique) reduced permutation obtained from π by contracting
strips of length ≥ 2.

Clearly

I red(π) ≤ π;

I dt(π) = dt(red(π)).
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The transposition model

More notations

For π ∈ Sn and v1, . . . vn nonnegative integers, the monotone inflation of
π through v = (v1, . . . vn) is

π[v ] = π[idv1 , . . . , idvn ].

π = 41352, v = (0, 2, 1, 3, 2), π[v ] = . . .︸︷︷︸
4

12︸︷︷︸
1

5︸︷︷︸
3

678︸︷︷︸
5

34︸︷︷︸
2

.

MI (π): set of all monotone inflations of π.
MI (C ) =

⋃
π∈C MI (π).
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The transposition model

Monotone inflations and grid classes

Lemma
Given a {−1, 0, 1}-matrix M, denote with Geom(M) the geometric grid
class of permutations determined by M. Given a permutation π, let Mπ

be its permutation matrix. Then:

1. Geom(Mπ) = Geom(Mred(π));

2. MI (π) = Geom(Mπ);

3. MI (π) = MI (red(π)).

Corollary
If C is a set of reduced permutations, then MI (C ) is a class of pattern
avoiding permutations. Moreover, MI (C ) is strongly rational and finitely
based.



Pattern avoiding permutations in genome rearrangement problems: the transposition model

The transposition model

Monotone inflations and grid classes

Lemma
Given a {−1, 0, 1}-matrix M, denote with Geom(M) the geometric grid
class of permutations determined by M. Given a permutation π, let Mπ

be its permutation matrix. Then:

1. Geom(Mπ) = Geom(Mred(π));

2. MI (π) = Geom(Mπ);

3. MI (π) = MI (red(π)).

Corollary
If C is a set of reduced permutations, then MI (C ) is a class of pattern
avoiding permutations. Moreover, MI (C ) is strongly rational and finitely
based.



Pattern avoiding permutations in genome rearrangement problems: the transposition model

The transposition model

Monotone inflations and grid classes

Lemma
Given a {−1, 0, 1}-matrix M, denote with Geom(M) the geometric grid
class of permutations determined by M. Given a permutation π, let Mπ

be its permutation matrix. Then:

1. Geom(Mπ) = Geom(Mred(π));

2. MI (π) = Geom(Mπ);

3. MI (π) = MI (red(π)).

Corollary
If C is a set of reduced permutations, then MI (C ) is a class of pattern
avoiding permutations. Moreover, MI (C ) is strongly rational and finitely
based.



Pattern avoiding permutations in genome rearrangement problems: the transposition model

The transposition model

Monotone inflations and grid classes

Lemma
Given a {−1, 0, 1}-matrix M, denote with Geom(M) the geometric grid
class of permutations determined by M. Given a permutation π, let Mπ

be its permutation matrix. Then:

1. Geom(Mπ) = Geom(Mred(π));

2. MI (π) = Geom(Mπ);

3. MI (π) = MI (red(π)).

Corollary
If C is a set of reduced permutations, then MI (C ) is a class of pattern
avoiding permutations. Moreover, MI (C ) is strongly rational and finitely
based.



Pattern avoiding permutations in genome rearrangement problems: the transposition model

The transposition model

Monotone inflations and grid classes

Lemma
Given a {−1, 0, 1}-matrix M, denote with Geom(M) the geometric grid
class of permutations determined by M. Given a permutation π, let Mπ

be its permutation matrix. Then:

1. Geom(Mπ) = Geom(Mred(π));

2. MI (π) = Geom(Mπ);

3. MI (π) = MI (red(π)).

Corollary
If C is a set of reduced permutations, then MI (C ) is a class of pattern
avoiding permutations. Moreover, MI (C ) is strongly rational and finitely
based.



Pattern avoiding permutations in genome rearrangement problems: the transposition model

The transposition model

Permutations at transposition distance ≤ 1 from the
identity

Theorem

1. B1 = MI (1324);

2. π ∈ B1 if and only if π avoids the patterns 321, 2143, 2413, 3142;

3. For every n ≥ 1, let fn = B1 ∩ Sn be the number of permutations of
length n having distance 1 from the identity. Then

fn =

(
n + 3

3

)
− 2

(
n + 2

2

)
+

(
n + 1

1

)
+

(
n + 0

0

)
,

and its generating function is

F (x) =
∑
n≥0

fnx
n =

1− 3x + 4x2 − x3

(1− x)4
.
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The transposition model

Permutations at transposition distance ≤ k from the
identity

Suppose π = π1π2 · · ·πn is a reduced permutation of length n = 3h + 1
in the generating set of Bk .

Inflate π by choosing three (not necessarily distinct) indices
1 ≤ i ≤ j ≤ k ≤ n and replacing πi , πj and πk by strips of suitable
lengths, as follows:

I if the three indices are all distinct, take strips of length 2;

I if two of the indices are equal, take the associated strip of length 3;

I if all indices are equal, take a strip of length 4.

Interchange the two (adjacent) blocks obtained by breaking the nontrivial
strips we got by the previous inflation.

π = 1324, I = {2, 2, 4}  πI = 13 4︸︷︷︸ 526︸︷︷︸ 7  π̃I = 13 526︸︷︷︸ 4︸︷︷︸ 7
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The transposition model

Permutations at transposition distance ≤ k from the
identity

I(n): set of all 3-multisets of {1, . . . n}.
π = π1 · · ·πn: reduced permutation of length n.
For every I ∈ I(n):

I π̃I is a reduced permutation of length n + 3;

I if π1 = 1 and πn = n, then (π̃I )1 = 1 and (π̃I )n+3 = n + 3.

Proposition
For every reduced permutation π ∈ Sn, denote with MI (π)+1 the set of
all permutations which can be obtained with a single block transposition
from any permutation of MI (π). Then

MI (π)+1 =
⋃

I∈I(n)

MI (π̃I ).
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The transposition model

Permutations at transposition distance ≤ k from the
identity

Theorem
Let k ≥ 1.

1. There exist N = N(k) reduced permutations α(1), . . . , α(N) of length
3k + 1, each at distance k from the identity, such that

Bk =
N⋃
j=1

MI (α(j)).

2. Bk is a strongly rational and finitely-based permutation class;
moreover, each permutation of its basis has length at most 3k + 1.
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The transposition model

Permutations at transposition distance ≤ k from the
identity

When k = 2, we get

B2 =
⋃
π∈Π

MI (π),

where

Π = {1324657, 1352647, 1354627, 1364257, 1426357, 1436527,

1462537, 1524637, 1536247, 1624357, 1632547}.
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Sigh...!

But...

Cheyne Homberger, Vincent Vatter

On the effective and automatic
enumeration of polynomial
permutation classes

Journal of Symbolic Computation,
76 (2016) 84–96
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Sigh...!

“Give us something to take home!”

Further work:

I Describe the function N(k) (that is, what’s the cardinality of the set
of reduced permutations that generate Bk by monotone inflation?)

I More to know on the basis of Bk .

I Further models which could probably be approached in the same
way: reversal, prefix transposition, prefix reversal,...

I Deletion-Insertion model (Manda Riehl et al.).
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