Sorting with Pop Stacks

Lara Pudwell Valparaiso University faculty.valpo.edu/lpudwell

joint work with Rebecca Smith (SUNY - Brockport)

15th International Conference on Permutation Patterns
Reykjavik University
June 29, 2017

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortabilit 2-Pop-stack sortabilit

Polyominoes on a helix

Width Width

Stack sortable permutations

Theorem (Knuth, 1973)

 $\pi \in \mathcal{S}_n$ is 1-stack sortable iff π avoids 231. There are $C_n = \frac{\binom{2n}{n}}{n+1}$ such permutations.

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortabilit 2-Pop-stack sortabilit

Polyominoes on a helix

Width

Stack sortable permutations

Sorting with Pop Stacks Lara Pudwell

Theorem (Knuth, 1973)

 $\pi \in \mathcal{S}_n$ is 1-stack sortable iff π avoids 231. There are $C_n = \frac{\binom{2n}{n}}{n+1}$ such permutations.

Theorem (West, 1990)

 $\pi \in \mathcal{S}_n$ is 2-stack sortable iff π avoids 2341 and $3\overline{5}$ 241.

Theorem (Zeilberger, 1992)

There are $\frac{2(3n)!}{(n+1)!(2n+1)!}$ 2-stack sortable permutations of length n.

Stacks

Pop stacks

1-Pop-stack sortabilit

Polyominoes on a helix

Width :

Pop Stack Operations

A pop stack is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- pop remove all elements from the stack and put them on the end of the output.

Input: 21534

Output: P(21534) = ...

Lara Pudwell

Pop stacks

Pop Stack Operations

A pop stack is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- pop remove all elements from the stack and put them on the end of the output.

Input: 1534

Output: P(21534) = ...

Lara Pudwell

Pop stacks

Pop Stack Operations

A pop stack is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- pop remove all elements from the stack and put them on the end of the output.

Input: 534

Output: P(21534) = ...

Lara Pudwell

Pop stacks

Pop Stack Operations

A pop stack is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- pop remove all elements from the stack and put them on the end of the output.

Input: 534

Output: P(21534) = 12...

Lara Pudwell

Pop stacks

Pop Stack Operations

A pop stack is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- pop remove all elements from the stack and put them on the end of the output.

Input: 34

5

Output: P(21534) = 12...

Lara Pudwell

Pop stacks

Pop Stack Operations

A pop stack is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- pop remove all elements from the stack and put them on the end of the output.

Input: 4

3 5

Output: P(21534) = 12...

Lara Pudwell

Pop stacks

Sorting with Pop Stacks

Lara Pudwel

Stacks

Pop stacks

1-Pop-stack sortabilit

Polyominoes on a helix

Width 2 Width 3

Wrapping up

Pop Stack Operations

A *pop stack* is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- ▶ pop remove all elements from the stack and put them on the end of the output.

Input: 4

21534 is *not* 1-pop-stack sortable.

Output: P(21534) = 1235...

Sorting with Pop Stacks

Stacks

Pop stacks

1-Pop-stack sortabili

Polyominoes on a helix

Width 2 Width 3

Wrapping up

Pop Stack Operations

A *pop stack* is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- ▶ pop remove all elements from the stack and put them on the end of the output.

Input:

4

21534 is *not* 1-pop-stack sortable.

Output: P(21534) = 1235...

Pop Stack Operations

A *pop stack* is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- ▶ pop remove all elements from the stack and put them on the end of the output.

Input:

21534 is *not* 1-pop-stack sortable.

Output: P(21534) = 12354

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortabilit

Polyominoes on a helix

Width 2 Width 3

Polyominoes on a helix

Width 2 Width 3

Wrapping up

Pop Stack Operations

A *pop stack* is a last-in first-out data-structure with two operations:

- push remove the first element from input and put it on the top of the stack,
- pop remove all elements from the stack and put them on the end of the output.

In general, if $\pi_1 \cdots \pi_i$ is the longest decreasing prefix of π , write $R = \pi_{i+1} \cdots \pi_n$ so that $\pi = \pi_1 \cdots \pi_i R$.

$$P(\pi_1\cdots\pi_iR)=\pi_i\cdots\pi_1P(R).$$

Pop-stack sortable permutations

If $P(\pi) = 12 \cdots n$, then π is layered.

•

Theorem (Avis and Newborn, 1981)

 $\pi \in \mathcal{S}_n$ is 1-pop-stack sortable iff π avoids 231 and 312. There are 2^{n-1} such permutations.

araiso Sorting with Pop

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability 2-Pop-stack sortability

Polyominoes on a helix

Width Width

vvrapping up

Compositions

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability

Polyominoes on a helix

Width 3

Wrapping up

Definition

Composition of n – an ordered arrangement of positive integers whose sum is n

Example: n = 3

Definition

A permutation $\pi \in \mathcal{S}_n$ is 2-pop-stack sortable if and only if $P(P(\pi)) = 1 \cdots n$.

Notation

If
$$P(P(\pi)) = 1 \cdots n$$
, write $\pi \in \mathcal{P}_{2,n}$.
Let $\mathcal{P}_2 = \bigcup_{n \ge 1} \mathcal{P}_{2,n}$.

Example: $21534 \in \mathcal{P}_{2,5}$ because

$$P(P(21534)) = P(12354) = 12345.$$

Sorting with Pop
Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability 2-Pop-stack sortability

Polyominoes on a helix

Width 2 Width 3

Definition

A permutation $\pi \in \mathcal{S}_n$ is 2-pop-stack sortable if and only if $P(P(\pi)) = 1 \cdots n$.

Notation

If
$$P(P(\pi)) = 1 \cdots n$$
, write $\pi \in \mathcal{P}_{2,n}$.

Let $\mathcal{P}_2 = \bigcup_{n>1} \mathcal{P}_{2,n}$.

Example: $21534 \in \mathcal{P}_{2.5}$ because

$$P(P(21534)) = P(12354) = 12345.$$

Definition

A block of a permutation is a maximal contiguous decreasing subsequence.

Example: $\pi = 21534$ has blocks $B_1 = 21$, $B_2 = 53$, $B_3 = 4$.

Sorting with Pop Stacks

Lara Pudwell

Pop stacks

2-Pop-stack sortability

Claim

 π with blocks B_1, \ldots, B_ℓ is 2-pop-stack sortable iff either $\max(B_i) < \min(B_{i+1})$ or $\max(B_i) = \min(B_{i+1}) + 1$ for $1 \le i \le \ell - 1$.

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pon stacks

1-Pop-stack sortability
2-Pop-stack sortability

Polyominoes on a helix

Width

Claim

 π with blocks B_1, \ldots, B_ℓ is 2-pop-stack sortable iff either $\max(B_i) < \min(B_{i+1})$ or $\max(B_i) = \min(B_{i+1}) + 1$ for $1 \le i \le \ell - 1$.

Theorem (P and Smith, 2017+)

 π is 2-pop-stack sortable iff π avoids 2341, 3412, 3421, 4123, 4231, 4312, 4 $\overline{1}$ 352, and 413 $\overline{5}$ 2.

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability 2-Pop-stack sortability

Polyominoes on a helix

Width

vvrapping up

Lemma

 π with blocks B_1, \ldots, B_ℓ is 2-pop-stack sortable iff either $\max(B_i) < \min(B_{i+1})$ or $\max(B_i) = \min(B_{i+1}) + 1$ for $1 \le i \le \ell - 1$.

Given a composition c, let f(c) be the number of pairs of adjacent summands that aren't both 1.

Example:
$$f(1+2+1+1) = 2$$
.

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability 2-Pop-stack sortability

Polyominoes on a helix

Width 2 Width 3

Lemma

 π with blocks B_1, \ldots, B_ℓ is 2-pop-stack sortable iff either $\max(B_i) < \min(B_{i+1})$ or $\max(B_i) = \min(B_{i+1}) + 1$ for $1 \le i \le \ell - 1$.

▶ Given a composition c, let f(c) be the number of pairs of adjacent summands that aren't both 1.

Example:
$$f(1+2+1+1) = 2$$
.

▶ There are $2^{f(c)}$ 2-pop-stack sortable permutations with block structure given by c.

Example: The 2-pop-stack sortable permutations with

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability 2-Pop-stack sortability

Polyominoes on a helix

Width 2

Notation

- ► a(n, k) is the number of 2-pop-stack sortable permutations of length n with k ascents.
- ▶ b(n, k) is the number of permutations counted by a(n, k) with last block of size 1.

$$a(n,k) = \begin{cases} 0 & k < 0 \text{ or } k \ge n \\ 1 & k = 0 \text{ or } k = n-1 \\ 2\sum_{i=1}^{n-1} a(i,k-1) - b(n-1,k-1) & \text{otherwise} \end{cases}$$

$$b(n,k) = \begin{cases} 0 & k < 1 \text{ or } k \ge n \\ 1 & k = n-1 \\ 2a(n-1,k-1) - b(n-1,k-1) & \text{otherwise} \end{cases}$$

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability
2-Pop-stack sortability

Polyominoes on a helix

Width 2 Width 3

wapping up

Enumeration via ascents

Theorem (P and Smith, 2017+)

$$\sum_{\pi \in \mathcal{P}_2} x^{|\pi|} y^{\mathrm{asc}(\pi)} = \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} a(n,k) x^n y^k = \frac{x(x^2y+1)}{1-x-xy-x^2y-2x^3y^2}$$

$$\frac{x(x^{2}y+1)}{1-x-xy-x^{2}y-2x^{3}y^{2}}$$

$$=x+(y+1)x^{2}+(y^{2}+4y+1)x^{3}$$

$$+(y^{3}+8y^{2}+6y+1)x^{4}$$

$$+(y^{4}+12y^{3}+20y^{2}+8y+1)x^{5}$$

$$+(y^{5}+16y^{4}+48y^{3}+36y^{2}+10y+1)x^{6}$$

$$+\cdots$$

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability 2-Pop-stack sortability

Polyominoes on a helix

Width 2

/Vrapping up

Enumeration via ascents

Sorting with Pop Stacks

Lara Pudwell

tacks

Pop stacks

1-Pop-stack sortability 2-Pop-stack sortability

Polyominoes on a helix

Width 2 Width 3

Wrapping up

Theorem (P and Smith, 2017+)

$$\sum_{\pi \in \mathcal{P}_2} x^{|\pi|} y^{\mathrm{asc}(\pi)} = \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} a(n,k) x^n y^k = \frac{x(x^2y+1)}{1 - x - xy - x^2y - 2x^3y^2}$$

Corollary

$$\sum_{\pi \in \mathcal{P}_2} x^{|\pi|} = \frac{x(x^2 + 1)}{1 - 2x - x^2 - 2x^3}$$

OEIS A224232: 1, 2, 6, 16, 42, 112, 298, 792, . . .

So
$$|\mathcal{P}_{2,n}| = 2 |\mathcal{P}_{2,n-1}| + |\mathcal{P}_{2,n-2}| + 2 |\mathcal{P}_{2,n-3}|$$
.

Polyominoes

Sorting with Pop Stacks

Lara Pudwell

Polyominoes on a helix

OEIS A001168: 1, 2, 6, 19, 63, 216, 760, ...

(General formula is open)

Polyominoes on a helix

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability 2-Pop-stack sortability

Polyominoes on a helix

Width Width

vvrapping up

4	5	6
2	3	4
	1	2

width 2 helix

6	7	8	9
3	4	5	6
	1	2	3

width 3 helix

Polyominoes on a helix of width 2

4	5	6
2	3	4
	1	2

$$n=1$$
:

$$n=2$$
:

Sequence: $1, 2, 4, ..., 2^{n-1}, ...$

Sorting with Pop Stacks

Lara Pudwell

Stacks

Pop stacks

1-Pop-stack sortability 2-Pop-stack sortability

Polyominoes on a helix

Width 2 Width 3

Polyominoes on a helix of width 2 W Valparaiso University

Sorting with Pop Stacks

Lara Pudwell

Width 2

Polyominoes on a helix of width 3

	_		
6	7	8	9
3	4	5	6
	1	2	3

$$n=1$$
:

$$n=2$$
:

Sequence: 1, 2, 6, 16, 42, 112, . . .

(OEIS A224232, same as 2-pop-stack sortable permutations)

Sorting with Pop Stacks

Lara Pudwell

tacks

Pop stacks

1-Pop-stack sortabilit

Polyominoes on a

Width 2 Width 3

Polyominoes on a helix of width 3 W Valparaiso University

Sorting with Pop Stacks

Lara Pudwell

Width 3

Polyominoes on a helix of width 3 W Valparaiso University

Sorting with Pop Stacks

Lara Pudwell

Width 3

Summary

▶ π is 2-pop-stack sortable iff π avoids 2341, 3412, 3421, 4123, 4231, 4312, 4 $\overline{1}$ 352, and 413 $\overline{5}$ 2.

$$\sum_{\pi \in \mathcal{P}_2} x^{|\pi|} = \frac{x(x^2 + 1)}{1 - 2x - x^2 - 2x^3}$$

- Bijections!
 - ▶ 1-pop-stack sortable permutations are in bijection with polyominoes on a helix of width 2,
 - ▶ 2-pop-stack sortable permutations are in bijection with polyominoes on a helix of width 3,

Stacks

Pop stacks

1-Pop-stack sort

Polyominoes on a

Width 2

Summary

Stacks Lara Pudwell

Sorting with Pop

Stacks

Pop stacks

1-Pop-stack sortability

Polyominoes on a helix

Width Width

- ▶ π is 2-pop-stack sortable iff π avoids 2341, 3412, 3421, 4123, 4231, 4312, 4 $\overline{1}$ 352, and 413 $\overline{5}$ 2.
- $\sum_{\pi \in \mathcal{P}_2} x^{|\pi|} = \frac{x(x^2 + 1)}{1 2x x^2 2x^3}$
- ► Bijections!
 - ▶ 1-pop-stack sortable permutations are in bijection with polyominoes on a helix of width 2,
 - ▶ 2-pop-stack sortable permutations are in bijection with polyominoes on a helix of width 3,
 - ...but 3-pop-stack sortable permutations aren't in bijection with polyominoes on a helix of width 4.

References

Stacks Lara Pudwell

Sorting with Pop

Stacks

Pop stacks

1-Pop-stack sortability

Polyominoes on a helix

Width 2

Wrapping up

 G. Aleksandrowich, A. Asinowski, and G. Barequet, Permutations with forbidden patterns and polyominoes on a twisted cylinder of width 3. Discrete Math. 313 (2013), 1078–1086.

D. Avis and M. Newborn, On pop-stacks in series. *Utilitas Math.* 19 (1981), 129–140.

Thanks for listening!

slides at faculty.valpo.edu/lpudwell email: Lara.Pudwell@valpo.edu