Quarter Turn Baxter Permutations

Kevin Dilks

North Dakota State University

June 26, 2017

What is a Baxter Permutation?

Definition

A *Baxter permutation* is a permutation that, when written in one-line notation, avoids the generalized patterns 3-14-2 and 2-41-3. This is to say that there are no instances of the patterns 3142 or 2413 where the letters representing 1 and 4 are adjacent in the original word.

Example

41352 is a Baxter permutation.

What is a Baxter Permutation?

Definition

A *Baxter permutation* is a permutation that, when written in one-line notation, avoids the generalized patterns 3-14-2 and 2-41-3. This is to say that there are no instances of the patterns 3142 or 2413 where the letters representing 1 and 4 are adjacent in the original word.

Example

41352 is a Baxter permutation.

What is a Baxter Permutation?

Definition

A *Baxter permutation* is a permutation that, when written in one-line notation, avoids the generalized patterns 3-14-2 and 2-41-3. This is to say that there are no instances of the patterns 3142 or 2413 where the letters representing 1 and 4 are adjacent in the original word.

Example

41352 is a Baxter permutation.

Number of Baxter Permutations

Theorem (Chung, Graham, Hoggatt, Kleiman)

The number of Baxter permutations of length n is

$$B(n) := \sum_{k=0}^{n-1} \frac{\binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}}{\binom{n+1}{1} \binom{n+1}{2}}$$

For n = 1, 2, 3..., B(n) = 1, 2, 6, 22, 92, 422, 2074, 10754...

Number of Baxter Permutations

Theorem (Chung, Graham, Hoggatt, Kleiman)

The number of Baxter permutations of length n is

$$B(n) := \sum_{k=0}^{n-1} \frac{\binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}}{\binom{n+1}{1} \binom{n+1}{2}}$$

For n = 1, 2, 3..., B(n) = 1, 2, 6, 22, 92, 422, 2074, 10754...

Number of Baxter Permutations

Theorem (Mallows)

The number of Baxter permutations with k ascents is given by the kth summand, $\frac{\binom{n+1}{k}\binom{n+1}{k+1}\binom{n+1}{k+2}}{\binom{n+1}{2}}$

Multiplication by the longest element (w_0) on either side takes a Baxter permutation of length *n* with *k* ascents to a Baxter permutation of length *n* with n - k + 1 ascents.

Number of Baxter Permutations

Theorem (Mallows)

The number of Baxter permutations with k ascents is given by the kth summand, $\frac{\binom{n+1}{k}\binom{n+1}{k+1}\binom{n+1}{k+2}}{\binom{n+1}{2}\binom{n+1}{2}}$

Multiplication by the longest element (w_0) on either side takes a Baxter permutation of length *n* with *k* ascents to a Baxter permutation of length *n* with n - k + 1 ascents.

Chart of Examples

Baxter	Twisted Baxter	Baxter Paths	Baxter Tableaux	Diagonal	Baxter Plane
Permutations	Permutations	Fains	Tableaux	Rectangulations	Partitions
2341	2341		1 4 6 9 2 5 8 11 3 7 1012		22
↓ 4123	↓ 4123		↓ 1 3 6 10 2 5 8 11 4 7 9 12		↓ 1 1
3412 ර	3142 ර	Ŭ	1 3 7 9 2 5 8 11 4 6 1012 Ŭ	Ŭ.	2 1 ්

• All "Baxter Objects" have a equivariant rotation symmetry.

- Baxter permutations are closed under taking inverses.
- Bousquet-Mèlou gave enumeration for involutive, Fusy bijective proof.
- What about quarter turn rotation of Baxter permutation matrix?

- All "Baxter Objects" have a equivariant rotation symmetry.
- Baxter permutations are closed under taking inverses.
- Bousquet-Mèlou gave enumeration for involutive, Fusy bijective proof.
- What about quarter turn rotation of Baxter permutation matrix?

- All "Baxter Objects" have a equivariant rotation symmetry.
- Baxter permutations are closed under taking inverses.
- Bousquet-Mèlou gave enumeration for involutive, Fusy bijective proof.
- What about quarter turn rotation of Baxter permutation matrix?

- All "Baxter Objects" have a equivariant rotation symmetry.
- Baxter permutations are closed under taking inverses.
- Bousquet-Mèlou gave enumeration for involutive, Fusy bijective proof.
- What about quarter turn rotation of Baxter permutation matrix?

- For each $n \in \mathbb{N}$, you have a set of things, T(n).
- Natural restriction map from Res : $T(n+1) \mapsto T(n)$.
- Define a tree where the parent of $x \in T(n)$ is $\text{Res}(x) \in T(n-1)$.
- Figure out how this tree grows.

- For each $n \in \mathbb{N}$, you have a set of things, T(n).
- Natural restriction map from Res : $T(n+1) \mapsto T(n)$.
- Define a tree where the parent of $x \in T(n)$ is $\text{Res}(x) \in T(n-1)$.
- Figure out how this tree grows.

- For each $n \in \mathbb{N}$, you have a set of things, T(n).
- Natural restriction map from Res : $T(n+1) \mapsto T(n)$.
- Define a tree where the parent of $x \in T(n)$ is $\text{Res}(x) \in T(n-1)$.
- Figure out how this tree grows.

- For each $n \in \mathbb{N}$, you have a set of things, T(n).
- Natural restriction map from Res : $T(n+1) \mapsto T(n)$.
- Define a tree where the parent of $x \in T(n)$ is $\text{Res}(x) \in T(n-1)$.
- Figure out how this tree grows.

• Take $T(n) = S_n$.

- Res : $S_{n+1} \mapsto S_n$ given by deleting n+1.
- There are n + 1 places we can insert n + 1 into a permutation of length n, inductively gives $|S_n| = n!$.
- Can keep track of where n + 1 inserted to track inversion, get Lehmer code.

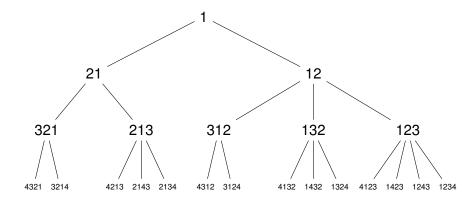
- Take $T(n) = S_n$.
- Res : $S_{n+1} \mapsto S_n$ given by deleting n + 1.
- There are n + 1 places we can insert n + 1 into a permutation of length n, inductively gives $|S_n| = n!$.
- Can keep track of where n + 1 inserted to track inversion, get Lehmer code.

- Take $T(n) = S_n$.
- Res : $S_{n+1} \mapsto S_n$ given by deleting n+1.
- There are n + 1 places we can insert n + 1 into a permutation of length n, inductively gives $|S_n| = n!$.
- Can keep track of where n + 1 inserted to track inversion, get Lehmer code.

- Take $T(n) = S_n$.
- Res : $S_{n+1} \mapsto S_n$ given by deleting n+1.
- There are n + 1 places we can insert n + 1 into a permutation of length n, inductively gives $|S_n| = n!$.
- Can keep track of where n + 1 inserted to track inversion, get Lehmer code.

231 Avoiding Permutations

Let T(n) = Av(231)



231 Avoiding

Can insert new largest label to left of a left-to-right maximum, or at the end of a word.

41325876

413258769 413259876 413295876 941325876

Can insert new largest label to left of a left-to-right maximum, or at the end of a word.

4132**58**76

413258769 413259876 413295876 941325876

Can insert new largest label to left of a left-to-right maximum, or at the end of a word.

4132**58**76

413258769 413259876 413295876 941325876

Can insert new largest label to left of a left-to-right maximum, or at the end of a word.

4132**58**76

4132**58**76**9 4**132**59**876 **4**132**9**5876 **9**41325876

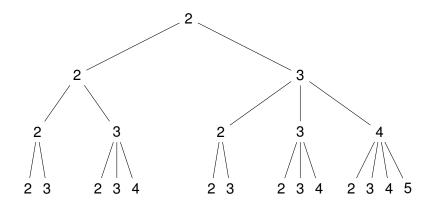


Figure: The beginning of the Catalan tree

Chart of Examples

Baxter Permutations	Twisted Baxter Permutations	Baxter Paths	Baxter Tableaux	Diagonal Rectangulations	Baxter Plane Partitions
1243 ‡ 2134	1243 ‡ 2134		1 3 6 9 2 5 7 11 4 8 1012 1 3 5 9 2 6 8 11 4 7 1012		3 3 ↓ 0 0
1342 ↓ 3124	1342 ↓ 3124		1 3 6 9 2 4 8 11 5 7 1012 1 3 6 8 2 5 9 11 4 7 1012	ÈŢ ‡Ţ	3 2 ‡ 1 0
‡ 1423 ‡ 2314	‡ 1423 ‡ 2314		1357 26911 481012 1359 24711 681012	÷ 	↓ 3 1 ↓ 2 0
2341 ↓ 4123	2341 ↓ 4123		1 4 6 9 2 5 8 11 3 7 1012 ↓ 1 3 6 10 2 5 8 11 4 7 9 12	- ŢŢ ŢŢ	2 2
1324 ්	1324 ්	•	1357 24911 681012 0	۲. c	3 0 ්
3412 ්	3142 ්	•	1379 25811 461012 ੱ	Č.	2 1 ්

Baxter Permutations

Av(231) would be similar with right to left maxima

 Baxter permutations allow both insertion immediately to the left of a left-to-right maxima, and immediately to the right of a right-to-left maxima.

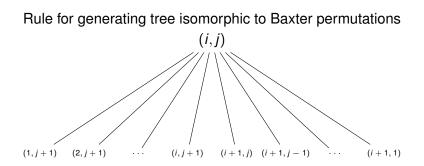
Baxter Permutations

- Av(231) would be similar with right to left maxima
- Baxter permutations allow both insertion immediately to the left of a left-to-right maxima, and immediately to the right of a right-to-left maxima.

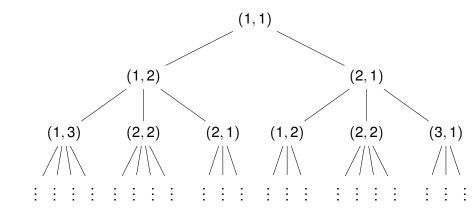
Baxter Permutations

Figure: Branching of generating tree at w = 31248756, with insertion points marked.

Baxter Permutations



Baxter Permutations



• Entries in permutation fixed under half turn come in pairs

- If $w_i = j$, then $w_{n+1-i} = n + 1 j$
- w=47136825
- Restriction map needs to remove *n* and 1 (and lower all labels by 1).

• Entries in permutation fixed under half turn come in pairs

• If
$$w_i = j$$
, then $w_{n+1-i} = n + 1 - j$

- w=47136825
- Restriction map needs to remove *n* and 1 (and lower all labels by 1).

• Entries in permutation fixed under half turn come in pairs

• If
$$w_i = j$$
, then $w_{n+1-i} = n + 1 - j$

- w=47136825
- Restriction map needs to remove *n* and 1 (and lower all labels by 1).

- Entries in permutation fixed under half turn come in pairs
- If $w_i = j$, then $w_{n+1-i} = n + 1 j$
- w=**4**713682**5**
- Restriction map needs to remove *n* and 1 (and lower all labels by 1).

- Entries in permutation fixed under half turn come in pairs
- If $w_i = j$, then $w_{n+1-i} = n + 1 j$
- w=4**7**1368**2**5
- Restriction map needs to remove *n* and 1 (and lower all labels by 1).

- Entries in permutation fixed under half turn come in pairs
- If $w_i = j$, then $w_{n+1-i} = n + 1 j$
- w=47**1**36**8**25
- Restriction map needs to remove *n* and 1 (and lower all labels by 1).

- Entries in permutation fixed under half turn come in pairs
- If $w_i = j$, then $w_{n+1-i} = n + 1 j$
- w=471**36**825
- Restriction map needs to remove *n* and 1 (and lower all labels by 1).

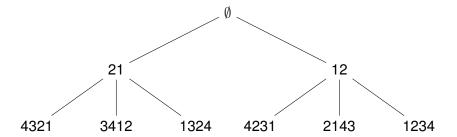
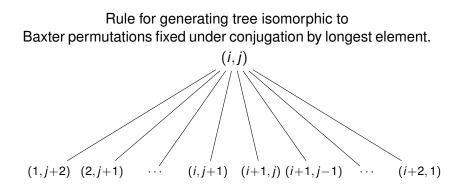


Figure: Generating Tree for Baxter permutations of even length fixed under conjugation by the longest element



q=-1 Phenomenon

If we let
$$n = k + \ell + 1$$
, $\begin{bmatrix} n \\ i \end{bmatrix}_q = \frac{[n]!_q}{[k]!_q[n-k]!_q}$, $[m]!_q = [m]_q[m-1]_q \dots [1]_q$, and $[j]_q = 1 + q + \dots + q^{j-1}$, we have

Theorem (D.)

The number of Baxter objects with parameter k fixed under their

natural involution is given by -

$$\frac{n+1}{k} \int_{q} {n+1 \brack k+1}_{q} {n+1 \brack k+2}_{q} |_{q=-1}$$

$$\frac{n+1}{1} \int_{q} {n+1 \brack 2}_{q} |_{q=-1}$$

- Equivalent to say if $w_i = j$, then $w_j = n + 1 i$, $w_{n+1-i} = n + 1 j$, and $w_{n+1-j} = i$.
- In general it makes a 4-cycle (i, j, n + 1 i, n + 1 j).
- Only degenerate case is a single central fixed point.
- Counting descents forces *n* to be odd, so n = 4k + 1.
- Restriction from removing n, 1, w_1 , and w_n .

- Equivalent to say if $w_i = j$, then $w_j = n + 1 i$, $w_{n+1-i} = n + 1 j$, and $w_{n+1-j} = i$.
- In general it makes a 4-cycle (i, j, n + 1 i, n + 1 j).
- Only degenerate case is a single central fixed point.
- Counting descents forces *n* to be odd, so n = 4k + 1.
- Restriction from removing n, 1, w_1 , and w_n .

- Equivalent to say if $w_i = j$, then $w_j = n + 1 i$, $w_{n+1-i} = n + 1 j$, and $w_{n+1-j} = i$.
- In general it makes a 4-cycle (i, j, n + 1 i, n + 1 j).
- Only degenerate case is a single central fixed point.
- Counting descents forces *n* to be odd, so n = 4k + 1.
- Restriction from removing n, 1, w_1 , and w_n .

- Equivalent to say if $w_i = j$, then $w_j = n + 1 i$, $w_{n+1-i} = n + 1 j$, and $w_{n+1-j} = i$.
- In general it makes a 4-cycle (i, j, n + 1 i, n + 1 j).
- Only degenerate case is a single central fixed point.
- Counting descents forces *n* to be odd, so n = 4k + 1.
- Restriction from removing n, 1, w_1 , and w_n .

- Equivalent to say if $w_i = j$, then $w_j = n + 1 i$, $w_{n+1-i} = n + 1 j$, and $w_{n+1-j} = i$.
- In general it makes a 4-cycle (i, j, n + 1 i, n + 1 j).
- Only degenerate case is a single central fixed point.
- Counting descents forces *n* to be odd, so n = 4k + 1.
- Restriction from removing *n*, 1, *w*₁, and *w_n*.

Background Generating Trees

Quarter Turn Baxter

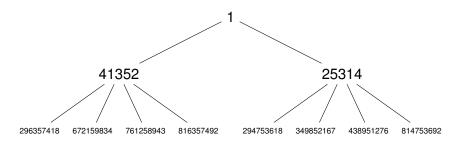


Figure: Start of generating tree for Baxter permutations fixed under 90° rotation.

Background Generating Trees

Quarter Turn Baxter

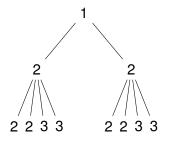


Figure: The beginning of the doubled Catalan tree

Background Generating Trees

Quarter Turn Baxter

Theorem (D.)

The number of Baxter permutations of length n fixed under a quarter turn is equal to $2^k C_k$ (where C_k is the k^{th} Catalan number) if n = 4k + 1, and 0 otherwise

Other interesting things with this enumeration (A151374, A052701)

- Obvious: Bicolored Dyck paths
- Less obvious: Rooted Eulerian n-edge map in the plane (Liskovets/Walsh '05)
- More less obvious: Lattice walks in first quadrant with steps (1, 1), (-1, -1), and (-1, 0) starting at origin and ending on *y*-axis. (Bousquet-Mélou/Mishna '09)

Other interesting things with this enumeration (A151374, A052701)

Obvious: Bicolored Dyck paths

- Less obvious: Rooted Eulerian n-edge map in the plane (Liskovets/Walsh '05)
- More less obvious: Lattice walks in first quadrant with steps (1, 1), (-1, -1), and (-1, 0) starting at origin and ending on *y*-axis. (Bousquet-Mélou/Mishna '09)

Other interesting things with this enumeration (A151374, A052701)

- Obvious: Bicolored Dyck paths
- Less obvious: Rooted Eulerian n-edge map in the plane (Liskovets/Walsh '05)
- More less obvious: Lattice walks in first quadrant with steps (1, 1), (-1, -1), and (-1, 0) starting at origin and ending on *y*-axis. (Bousquet-Mélou/Mishna '09)

Other interesting things with this enumeration (A151374, A052701)

- Obvious: Bicolored Dyck paths
- Less obvious: Rooted Eulerian n-edge map in the plane (Liskovets/Walsh '05)
- More less obvious: Lattice walks in first quadrant with steps (1, 1), (-1, -1), and (-1, 0) starting at origin and ending on *y*-axis. (Bousquet-Mélou/Mishna '09)