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Function Iteration

Example:
Let f(x) = 4x(1 — x). Then

(x, f(x), F2(x), F3(x)) = (.30, .84, .53,.99)
and so

Pat(.3, f,4) = st(.30, .84, .53,.99) = 1324




Patterns and Dynamical Systems

Theorem (Bandt-Keller-Pompe): Every piecewise-monotone map
f :[0,1] — [0,1] has forbidden patterns, i.e. patterns that never

arise as iterates.

# Allowed patterns «— complexity (i.e. topological entropy)
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Theorem (Bandt-Keller-Pompe): Every piecewise-monotone map
f :[0,1] — [0,1] has forbidden patterns, i.e. patterns that never

arise as iterates.

# Allowed patterns «— complexity (i.e. topological entropy)

Example: Let f(x) = 4x(1 — x).

321 ¢ Allow(f) — 4321,1432,54213, ... ¢ Allow(f)

contain consecutive 321




Sarkovskii’s Theorem

An n—periodic point of a map is a point such that

f(x) = x and fi(x) # x forall 1 < i < n.

Theorem (Sarkovskii):
If a continuous map f of the unit interval has an m-periodic point
and ¢ <t m in the Sarkovskii ordering

1<12<4224- <2 - -<15:2"<43:2" 4+ - - q7-2<15-2<493-2<]- - -<17<15<13

then f must also have an {-periodic point.

Question: Is there a similar order for the permutation structure of
periodic points?
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The cycle type of x is & € C, where

T=TTm2...Tp = & = (71, T2,...,Tn).
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Cycle Type

Let x be a periodic point of order n and Pat(x, f, n) = .
The cycle type of x is & € C, where

T=TTm2...Tp = & = (71, T2,...,Tn).

Example: Consider Gy(x) = {—2x}.
A 3-periodic orbit of G is:

(x, Ga(x), G2(x)) = (S g g)

Giving Pat($, G,,3) = 312 and

#=(3,1,2) =231




The Shape of Cycles
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The representative of a 6-periodic orbit of F3(x) = {3x} is x = 37.
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The Shape of Cycles

The representative of a 6-periodic orbit of F3(x) = {3x} is x = 37.
1311 5 1 3 9 )

Pat(X, F3,6) = st (14, ﬁ’ ﬁ, ﬁ, ﬁ’ ﬁ

The cycle type of the orbit is & = (6,5,3,1,2,4) = 241635.




Forcing Order

For a family of interval maps F, a cycle 7 forces a cycle 7 if, for
any f € F, whenever 7t € AlCyc(f) then 7 € AlCyc(f) as well.




Forcing Order

For a family of interval maps F, a cycle 7 forces a cycle 7 if, for
any f € F, whenever 7t € AlCyc(f) then 7 € AlCyc(f) as well.

(1,3,4,2)

(15,23,4) /(1,2,4,3N

(1,4,3,2) (1,4,3,2,5)

/

(1,5,2,4,3)

/

(1,3,2)

(1,4,2,3,5)

\

(1,2,3)

(124,35)  (1,5423)

~_ -
(1,3,4,2,5) (1,5,3,2,4)
AN /
(13,2.4) (1,4,2.3)
AN e
The forcing relations for (1.2)

continuous maps, (Baldwin). (1)



Beta Shifts and Negative Beta Shifts

For B > 1, consider the classes of functions,

= {fx} and Gp(x) =1 — {fx}" ="{-fx}.

MLMM

The graphs of FB = {ﬁx} for
=15 =2, and =2.5.

N

The graphs of Gg(x) =1 — {fx}" ="{-pFx} for
(a) B=15%, (b) B =2, and (c) B = 25.



Itineraries

Example: F3(x) = {3x}

Name the monotonic intervals: 0, 1, 2

(x, F3(x), F2(x),...) = (.13,.39,.17,.51,.53,.59,.77,...)
- 0 1 0 1 1 1 2...




Itineraries

Example: F3(x) = {3x}

Name the monotonic intervals: 0, 1, 2

(x, F3(x), F2(x),...) = (.13,.39,.17,.51,.53,.59,.77,...)
- 0 1 0 1 1 1 2...

Why? Applying F3 is now a shift of the word.

Y(wiwows...) = wows .. ..

Pat(x, F3,4) = Pat(010112...,%3,4)
= st(010112...,10112...,0112...,112...) = 1324



Beta and Negative Beta Expansions

For Fg(x) = {Bx}, itineraries correspond to 3-expansions:

=G E s
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Beta and Negative Beta Expansions

For Fg(x) = {Bx}, itineraries correspond to 3-expansions:

=G E s

For Gg(x) = {—px}, itineraries correspond to (—/3)-expansions:

X:_<W1+1 W2+1+W3+1 )
(=8) (=82  (-B)

even positions, | 3] is low and 0 is high.

0101... <4 0000... <, 1111... <, 1010...

Alternating Order: In odd positions, 0 is low and [/3] is high, in

10



Segmentations

Ask: Is 7 a cycle of Fy(x) = {Nx}?

An N-segmentation of 7 is a sequence 0 = ¢y < e < ---<ey=n

such that each segment @¢, 17,42 - . . Te,,, IS increasing.

A 3-segmetation of

#=(6,1,4,3,2,5) = 452361 ST T

o |- |

452361 orel

ke

From this, define a word w by A1t
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Segmentations

Ask: Is 7 a cycle of Fy(x) = {Nx}?

such that each segment @¢, 17,42 - . . Te,,, IS increasing.

An N-segmentation of 7 is a sequence 0 = ¢y < e < ---<ey=n

A 3-segmetation of

#=(6,1,4,3,2,5) = 452361 ST T
o-b--nl

452361 orel

e

From this, define a word w by el s il hd

4 3
1 1

= O

6 1
2 0

s
w

2
0
Theorem (Archer-Elizalde):  Pat(w™,Xy,n) =7

min{N : & € AlCyc(Fn)} = 1 + des(7)
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Negative Segmentations

Ask: Is 7 a cycle of Gy(x) = {—Nx}?

A —N-segmentation of 7 is asequence 0 =¢g < e <---< e =n

such that each segment @¢, (17,42 . . . Te,,, is decreasing.

A —3-segmetation of

#=(6,5,2,1,4,3) = 416325
4116325 T
m=652143 e
w=1210011 el TTe
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Negative Segmentations

Ask: Is 7 a cycle of Gy(x) = {—Nx}?

A —N-segmentation of 7 is asequence 0 =¢g < e <---< e =n

such that each segment @¢, (17,42 . . . Te,,, is decreasing.

A —3-segmetation of
7 =(6,5,2,1,4,3) = 416325

4116325 HRES
m=652143 e
w=1210011 T

Theorem (Archer-Elizalde): If w is primitive, then
Pat(w™,X_p,n) =

min{N : & € AlCyc(Gy)} = 1 + asc(@) + €(7)
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Negative Segmentations

Ask: Is 7 a cycle of Gy(x) = {—Nx}?

A —N-segmentation of 7 is asequence 0 =¢g < e <---< e =n

such that each segment @¢, (17,42 . . . Te,,, is decreasing.

A —3-segmetation of Collapsed cycles:

=1(6,5,2,1,4,3) = 416325 b Er
4116325 AR [inatch
o - -, A \',’J'. NN
m=652143 e IR eSS
w=210011 T LtIIII
— ——— | w=12011020110

Theorem (Archer-Elizalde): If w is primitive, then
Pat(w™,X_p,n) =

min{N : & € AlCyc(Gy)} = 1 + asc(@) + €(7)

12



(-shifts and —f-shifts

Theorem: Let B,(7) = inf{3 : & € AlCyc(Fg)}. Then B,(7) is
equal to the largest real root of

n
Pu(x) =x"—1-— Z WJ-X”*J',
j=1

where w = wiws ... w, is the word defined by the unique
(1 + des(7))-segmentation of 7.
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(-shifts and —f-shifts

Theorem: Let B,(7) = inf{3 : & € AlCyc(Fg)}. Then B,(7) is
equal to the largest real root of

n
Pu(x) =x"—1-— Z WJ-x”*j,
j=1

where w = wiws ... w, is the word defined by the unique
(1 + des(7))-segmentation of 7.

Theorem: Let By(#) = inf{3 : # € AlCyc(Gz)}. Then B,(#) is
equal to the largest real root of
n
Pu(¥) = (=x)" =1+ (w; +1)(—x)"7,
j=1
where w = wyws . .. w, is the word defined by a (usually unique)

(1 + asc(#) + €(#))-segmentation of 7.

(If e(7) = 1, take w to be the smallest with respect to <,;.) 13



Distributions

| | | | |
w w w
0 1 2 3 4 5

| | |
I I 1

| |
[ I
0 2 3 4 5
Plots of B,(#) (top) and B,(#) (bottom) for 7 € C, and n = 3,4,5,6. 14
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Distributions

Theorem: The distribution of [By(7)] = 1 + des(@) (resp.
[By(#)] = 1+ asc(#) + €(#)) is asymptotically normal with mean

n+1 2 _ n—1
0= and variance o -

Why? Descents in cycles are normal, (Fulman).

[Ere
N

w

N
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0
Plots of B,(#) (top) and B,(#) (bottom) for m € C, and n = 3,4,5,6.
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Distributions

Theorem: The distribution of [By(7)] = 1 + des(@) (resp.

[By(#)] = 1+ asc(#) + €(#)) is asymptotically normal with mean

n+1 2 _ n—1
0= and variance o -

Why? Descents in cycles are normal, (Fulman).

Conjecture: The distribution of B,(#) (resp. Bp(#)) is asymp-

2 _ n—-1
- 12 -

totically normal with mean p = 5 and variance o

[Ere
N
w
N
o1

|
[
0
Plots of B,(#) (top) and B,(#) (bottom) for m € C, and n = 3,4,5,6.
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Remember that we started with patterns realized by any point in

the interval?

Come talk to me here or at FPSAC about it:

“Patterns of Negative Shifts and Signed Shifts.”
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Forcing Order

For a family of interval maps F, a cycle 7 forces a cycle 7 if, for
any f € F, if # € AlCyc(f) then 7 € AlCyc(f) as well.

3142

53412 /2413\

24531

53124 54132

The forcing relations for 21
continuous maps, (Baldwin). 1
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