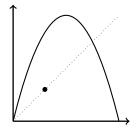
Patterns and Cycles in Dynamical Systems

Kate Moore Dartmouth College June 30, 2017

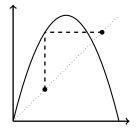
Let
$$f(x) = 4x(1 - x)$$
. Then

$$(x, f(x), f^{2}(x), f^{3}(x)) = (.30, -, -, -)$$



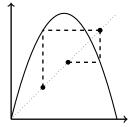
Let
$$f(x) = 4x(1-x)$$
. Then

$$(x, f(x), f^{2}(x), f^{3}(x)) = (.30, .84, -, -)$$



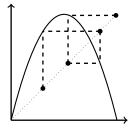
Let
$$f(x) = 4x(1 - x)$$
. Then

$$(x, f(x), f^{2}(x), f^{3}(x)) = (.30, .84, .53, -)$$



Let
$$f(x) = 4x(1-x)$$
. Then

$$(x, f(x), f^{2}(x), f^{3}(x)) = (.30, .84, .53, .99)$$



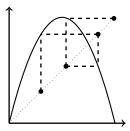
Example:

Let f(x) = 4x(1 - x). Then

$$(x, f(x), f^{2}(x), f^{3}(x)) = (.30, .84, .53, .99)$$

and so

$$Pat(.3, f, 4) = st(.30, .84, .53, .99) = 1324$$



Theorem (Bandt-Keller-Pompe): Every piecewise-monotone map $f : [0,1] \rightarrow [0,1]$ has forbidden patterns, i.e. patterns that never arise as iterates.

Allowed patterns \longleftrightarrow complexity (i.e. topological entropy)

Theorem (Bandt-Keller-Pompe): Every piecewise-monotone map $f : [0,1] \rightarrow [0,1]$ has forbidden patterns, i.e. patterns that never arise as iterates.

Allowed patterns \longleftrightarrow complexity (i.e. topological entropy)

Example: Let f(x) = 4x(1 - x).

$$321 \notin \mathsf{Allow}(f) \rightarrow \underbrace{4321, 1432, 54213}_{\text{contain consecutive } 321} \dots \notin \mathsf{Allow}(f)$$

Sarkovskii's Theorem

An n-periodic point of a map is a point such that

$$f^n(x) = x$$
 and $f^i(x) \neq x$ for all $1 \leq i < n$.

Theorem (Sarkovskii):

If a continuous map f of the unit interval has an m-periodic point and $\ell \lhd m$ in the Sarkovskii ordering

$$1 \triangleleft 2 \triangleleft 2^2 \triangleleft \cdots \triangleleft 2^n \triangleleft \cdots \triangleleft 5 \cdot 2^n \triangleleft 3 \cdot 2^n \triangleleft \cdots \triangleleft 7 \cdot 2 \triangleleft 5 \cdot 2 \triangleleft 3 \cdot 2 \triangleleft \cdots \triangleleft 7 \triangleleft 5 \triangleleft 3$$

then f must also have an ℓ -periodic point.

Question: Is there a similar order for the permutation structure of periodic points?

Cycle Type

Let x be a periodic point of order n and $Pat(x, f, n) = \pi$. The cycle type of x is $\hat{\pi} \in C_n$ where

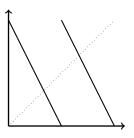
$$\pi = \pi_1 \pi_2 \ldots \pi_n \to \hat{\pi} = (\pi_1, \pi_2, \ldots, \pi_n).$$

Cycle Type

Let x be a periodic point of order n and $Pat(x, f, n) = \pi$. The cycle type of x is $\hat{\pi} \in C_n$ where

$$\pi = \pi_1 \pi_2 \ldots \pi_n \to \hat{\pi} = (\pi_1, \pi_2, \ldots, \pi_n).$$

Example: Consider $G_2(x) = \{-2x\}$.



Cycle Type

Let x be a periodic point of order n and $Pat(x, f, n) = \pi$. The cycle type of x is $\hat{\pi} \in C_n$ where

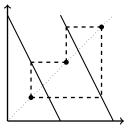
$$\pi = \pi_1 \pi_2 \ldots \pi_n \to \hat{\pi} = (\pi_1, \pi_2, \ldots, \pi_n).$$

Example: Consider $G_2(x) = \{-2x\}$. A 3-periodic orbit of G_2 is:

$$(x, G_2(x), G_2^2(x)) = \left(\frac{8}{9}, \frac{2}{9}, \frac{5}{9}\right)$$

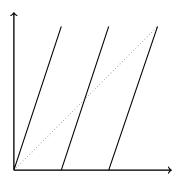
Giving $Pat(\frac{8}{9}, G_2, 3) = 312$ and

$$\hat{\pi} = (3, 1, 2) = 231$$



The Shape of Cycles

The representative of a 6-periodic orbit of $F_3(x) = \{3x\}$ is $x = \frac{13}{14}$.

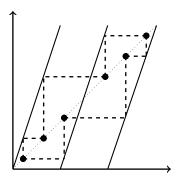


The Shape of Cycles

The representative of a 6-periodic orbit of $F_3(x) = \{3x\}$ is $x = \frac{13}{14}$.

$$\mathsf{Pat}(x, F_3, 6) = \mathsf{st}\left(\frac{13}{14}, \frac{11}{14}, \frac{5}{14}, \frac{1}{14}, \frac{3}{14}, \frac{9}{14}\right) = 653124$$

The cycle type of the orbit is $\hat{\pi} = (6, 5, 3, 1, 2, 4) = 241635$.

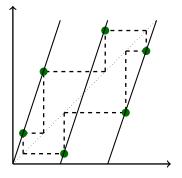


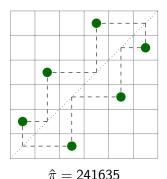
The Shape of Cycles

The representative of a 6-periodic orbit of $F_3(x) = \{3x\}$ is $x = \frac{13}{14}$.

$$\mathsf{Pat}(x, F_3, 6) = \mathsf{st}\left(\frac{13}{14}, \frac{11}{14}, \frac{5}{14}, \frac{1}{14}, \frac{3}{14}, \frac{9}{14}\right) = 653124$$

The cycle type of the orbit is $\hat{\pi} = (6, 5, 3, 1, 2, 4) = 241635$.



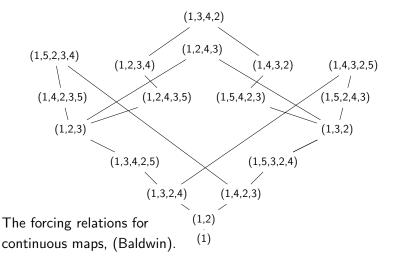


Forcing Order

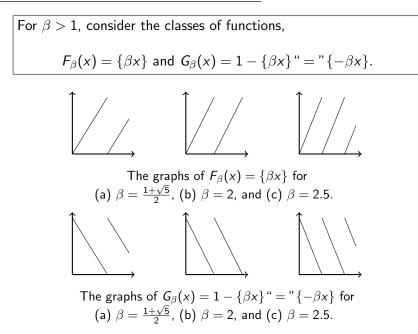
For a family of interval maps \mathcal{F} , a cycle $\hat{\pi}$ forces a cycle $\hat{\tau}$ if, for any $f \in \mathcal{F}$, whenever $\hat{\pi} \in AlCyc(f)$ then $\hat{\tau} \in AlCyc(f)$ as well.

Forcing Order

For a family of interval maps \mathcal{F} , a cycle $\hat{\pi}$ forces a cycle $\hat{\tau}$ if, for any $f \in \mathcal{F}$, whenever $\hat{\pi} \in AlCyc(f)$ then $\hat{\tau} \in AlCyc(f)$ as well.



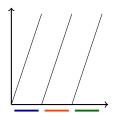
Beta Shifts and Negative Beta Shifts



Itineraries

Example: $F_3(x) = \{3x\}$

Name the monotonic intervals: 0, 1, 2

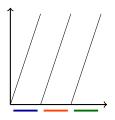


$$(x, F_3(x), F_3^2(x), \ldots) = (.13, .39, .17, .51, .53, .59, .77, \ldots) \rightarrow 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 2 \ldots$$

Itineraries

Example: $F_3(x) = \{3x\}$

Name the monotonic intervals: 0, 1, 2



$$(x, F_3(x), F_3^2(x), \ldots) = (.13, .39, .17, .51, .53, .59, .77, \ldots) \rightarrow 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 2 \ldots$$

Why? Applying F_3 is now a *shift* of the word.

 $\Sigma(w_1w_2w_3\ldots)=w_2w_3\ldots$

 $Pat(x, F_3, 4) = Pat(010112..., \Sigma_3, 4)$

= st(010112..., 10112..., 0112..., 112...) = 1324

Beta and Negative Beta Expansions

For $F_{\beta}(x) = \{\beta x\}$, it ineraries correspond to β -expansions:

$$x = \frac{w_1}{\beta} + \frac{w_2}{\beta^2} + \frac{w_3}{\beta^3} + \dots$$

Beta and Negative Beta Expansions

For $F_{\beta}(x) = \{\beta x\}$, itineraries correspond to β -expansions:

$$x = \frac{w_1}{\beta} + \frac{w_2}{\beta^2} + \frac{w_3}{\beta^3} + \dots$$

For $G_{\beta}(x) = \{-\beta x\}$, itineraries correspond to $(-\beta)$ -expansions: $x = -\left(\frac{w_1 + 1}{(-\beta)} + \frac{w_2 + 1}{(-\beta)^2} + \frac{w_3 + 1}{(-\beta)^3} + \dots\right).$

Alternating Order: In odd positions, 0 is low and $\lfloor \beta \rfloor$ is high, in even positions, $\lfloor \beta \rfloor$ is low and 0 is high.

 $0101\ldots <_{\mathit{alt}} 0000\ldots <_{\mathit{alt}} 1111\ldots <_{\mathit{alt}} 1010\ldots$

Ask: Is $\hat{\pi}$ a cycle of $F_N(x) = \{Nx\}$?

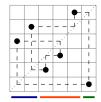
An N-segmentation of $\hat{\pi}$ is a sequence $0 = e_0 \leq e_1 \leq \cdots \leq e_N = n$ such that each segment $\hat{\pi}_{e_t+1} \hat{\pi}_{e_t+2} \dots \hat{\pi}_{e_{t+1}}$ is increasing.

A 3-segmetation of

$$\hat{\pi} = (6, 1, 4, 3, 2, 5) = 452361$$

4 5 | 2 3 6 | 1

From this, define a word ω by



Ask: Is $\hat{\pi}$ a cycle of $F_N(x) = \{Nx\}$?

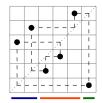
An N-segmentation of $\hat{\pi}$ is a sequence $0 = e_0 \leq e_1 \leq \cdots \leq e_N = n$ such that each segment $\hat{\pi}_{e_t+1} \hat{\pi}_{e_t+2} \dots \hat{\pi}_{e_{t+1}}$ is increasing.

A 3-segmetation of

$$\hat{\pi} = (6, 1, 4, 3, 2, 5) = 452361$$

4 5 | 2 3 6 | 1

From this, define a word ω by



Ask: Is $\hat{\pi}$ a cycle of $F_N(x) = \{Nx\}$?

An N-segmentation of $\hat{\pi}$ is a sequence $0 = e_0 \leq e_1 \leq \cdots \leq e_N = n$ such that each segment $\hat{\pi}_{e_t+1} \hat{\pi}_{e_t+2} \dots \hat{\pi}_{e_{t+1}}$ is increasing.

A 3-segmetation of

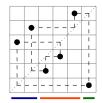
$$\hat{\pi} = (6, 1, 4, 3, 2, 5) = 452361$$

4 5 | 2 3 6 | 1

From this, define a word ω by

$$\pi = 6 \quad 1 \quad 4 \quad 3 \quad 2 \quad 5$$

$$\omega = _ 0 \quad 1 \quad 1 \quad 0 \quad 1$$



Ask: Is $\hat{\pi}$ a cycle of $F_N(x) = \{Nx\}$?

An N-segmentation of $\hat{\pi}$ is a sequence $0 = e_0 \leq e_1 \leq \cdots \leq e_N = n$ such that each segment $\hat{\pi}_{e_t+1} \hat{\pi}_{e_t+2} \dots \hat{\pi}_{e_{t+1}}$ is increasing.

A 3-segmetation of

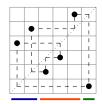
$$\hat{\pi} = (6, 1, 4, 3, 2, 5) = 452361$$

4 5 | 2 3 6 | 1

From this, define a word ω by

Theorem (Archer-Elizalde): $Pat(\omega^{\infty}, \Sigma_N, n) = \pi$

 $\min\{N: \hat{\pi} \in \mathsf{AlCyc}(F_N)\} = 1 + \mathsf{des}(\hat{\pi})$



Negative Segmentations

Ask: Is $\hat{\pi}$ a cycle of $G_N(x) = \{-Nx\}$?

A -N-segmentation of $\hat{\pi}$ is a sequence $0 = e_0 \leq e_1 \leq \cdots \leq e_k = n$ such that each segment $\hat{\pi}_{e_t+1} \hat{\pi}_{e_t+2} \dots \hat{\pi}_{e_{t+1}}$ is decreasing.

A -3-segmetation of $\hat{\pi} = (6, 5, 2, 1, 4, 3) = 416325$ A 1 | 6 3 2 | 5 $\pi = 652143$ $\omega = 210011$

Negative Segmentations

Ask: Is $\hat{\pi}$ a cycle of $G_N(x) = \{-Nx\}$?

A -N-segmentation of $\hat{\pi}$ is a sequence $0 = e_0 \leq e_1 \leq \cdots \leq e_k = n$ such that each segment $\hat{\pi}_{e_t+1} \hat{\pi}_{e_t+2} \dots \hat{\pi}_{e_{t+1}}$ is decreasing.

A -3-segmetation of

$$\hat{\pi} = (6, 5, 2, 1, 4, 3) = 416325$$

A 1 | 6 3 2 | 5
 $\pi = 652143$
 $\omega = 210011$

Theorem (Archer-Elizalde): If ω is primitive, then

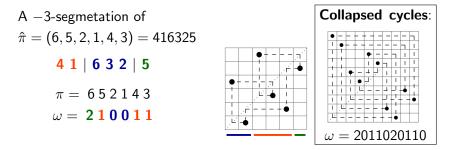
$$\mathsf{Pat}(\omega^{\infty}, \Sigma_{-N}, n) = \pi$$

 $\min\{N:\hat{\pi}\in\mathsf{AlCyc}(G_N)\}=1+\mathsf{asc}(\hat{\pi})+\epsilon(\hat{\pi})$

Negative Segmentations

Ask: Is $\hat{\pi}$ a cycle of $G_N(x) = \{-Nx\}$?

A -N-segmentation of $\hat{\pi}$ is a sequence $0 = e_0 \leq e_1 \leq \cdots \leq e_k = n$ such that each segment $\hat{\pi}_{e_t+1} \hat{\pi}_{e_t+2} \dots \hat{\pi}_{e_{t+1}}$ is decreasing.



Theorem (Archer-Elizalde): If ω is primitive, then

$$\mathsf{Pat}(\omega^\infty, \Sigma_{-N}, n) = \pi$$

 $\min\{N:\hat{\pi}\in\mathsf{AlCyc}(G_N)\}=1+\mathsf{asc}(\hat{\pi})+\epsilon(\hat{\pi})$

β -shifts and $-\beta$ -shifts

Theorem: Let $B_p(\hat{\pi}) = \inf\{\beta : \hat{\pi} \in AlCyc(F_\beta)\}$. Then $B_p(\hat{\pi})$ is equal to the largest real root of

$$p_{\omega}(x) = x^n - 1 - \sum_{j=1}^n w_j x^{n-j},$$

where $\omega = w_1 w_2 \dots w_n$ is the word defined by the unique $(1 + \operatorname{des}(\hat{\pi}))$ -segmentation of $\hat{\pi}$.

β -shifts and $-\beta$ -shifts

Theorem: Let $B_p(\hat{\pi}) = \inf\{\beta : \hat{\pi} \in AlCyc(F_\beta)\}$. Then $B_p(\hat{\pi})$ is equal to the largest real root of

$$p_{\omega}(x) = x^n - 1 - \sum_{j=1}^n w_j x^{n-j},$$

where $\omega = w_1 w_2 \dots w_n$ is the word defined by the unique $(1 + \operatorname{des}(\hat{\pi}))$ -segmentation of $\hat{\pi}$.

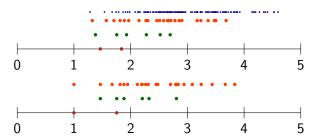
Theorem: Let $\overline{B}_p(\hat{\pi}) = \inf\{\beta : \hat{\pi} \in AlCyc(G_\beta)\}$. Then $\overline{B}_p(\hat{\pi})$ is equal to the largest real root of

$$ar{p}_{\omega}(x) = (-x)^n - 1 + \sum_{j=1}^n (w_j + 1)(-x)^{n-j},$$

where $\omega = w_1 w_2 \dots w_n$ is the word defined by a (usually unique) (1 + asc($\hat{\pi}$) + $\epsilon(\hat{\pi})$)-segmentation of $\hat{\pi}$.

(If $\epsilon(\hat{\pi}) = 1$, take ω to be the smallest with respect to $<_{alt.}$) ¹³

Distributions

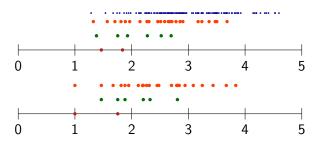


Plots of $B_p(\hat{\pi})$ (top) and $\overline{B}_p(\hat{\pi})$ (bottom) for $\pi \in C_n$ and n = 3, 4, 5, 6. ¹⁴

Distributions

Theorem: The distribution of $\lceil B_p(\hat{\pi}) \rceil = 1 + \operatorname{des}(\hat{\pi})$ (resp. $\lceil \overline{B}_p(\hat{\pi}) \rceil = 1 + \operatorname{asc}(\hat{\pi}) + \epsilon(\hat{\pi})$) is asymptotically normal with mean $\mu = \frac{n+1}{2}$ and variance $\sigma^2 = \frac{n-1}{12}$.

Why? Descents in cycles are normal, (Fulman).



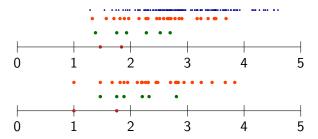
Plots of $B_p(\hat{\pi})$ (top) and $\overline{B}_p(\hat{\pi})$ (bottom) for $\pi \in C_n$ and n = 3, 4, 5, 6. ¹⁴

Distributions

Theorem: The distribution of $\lceil B_p(\hat{\pi}) \rceil = 1 + \operatorname{des}(\hat{\pi})$ (resp. $\lceil \overline{B}_p(\hat{\pi}) \rceil = 1 + \operatorname{asc}(\hat{\pi}) + \epsilon(\hat{\pi})$) is asymptotically normal with mean $\mu = \frac{n+1}{2}$ and variance $\sigma^2 = \frac{n-1}{12}$.

Why? Descents in cycles are normal, (Fulman).

Conjecture: The distribution of $B_p(\hat{\pi})$ (resp. $\overline{B}_p(\hat{\pi})$) is asymptotically normal with mean $\mu = \frac{n}{2}$ and variance $\sigma^2 = \frac{n-1}{12}$.



Plots of $B_p(\hat{\pi})$ (top) and $\overline{B}_p(\hat{\pi})$ (bottom) for $\pi \in C_n$ and n = 3, 4, 5, 6. ¹⁴

References

Remember that we started with patterns realized by *any* point in the interval?

Come talk to me here or at FPSAC about it:

"Patterns of Negative Shifts and Signed Shifts."

- K. Archer and S. Elizalde, Cyclic permutations realized by signed shifts, *Journal Combinatorics* 5 (2014), 1–30.
- [2] C. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations, *Nonlinearity* 15 (2002), 1595–1602.
- [3] S. Baldwin, Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions *Discrete Mathematics* 76 (1987), 111–127.
- [4] J. Fulman, The Distribution of Descents in Fixed Conjugacy Classes of the Symmetric Groups, *Journal of Combinatorial Theory* 84 (1998), 171–180.

Forcing Order

For a family of interval maps \mathcal{F} , a cycle $\hat{\pi}$ forces a cycle $\hat{\tau}$ if, for any $f \in \mathcal{F}$, if $\hat{\pi} \in AlCyc(f)$ then $\hat{\tau} \in AlCyc(f)$ as well.

