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Function Iteration

Example:

Let f (x) = 4x(1− x). Then

(x , f (x), f 2(x), f 3(x)) = (.30,−,−,−)

(x , f (x), f 2(x), f 3(x)) = (.30, .84, .53, .99)

and so

Pat(.3, f , 4) = st(.30, .84, .53, .99) = 1324
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Patterns and Dynamical Systems

Theorem (Bandt-Keller-Pompe): Every piecewise-monotone map

f : [0, 1] → [0, 1] has forbidden patterns, i.e. patterns that never

arise as iterates.

# Allowed patterns ←→ complexity (i.e. topological entropy)

Example: Let f (x) = 4x(1− x).

321 /∈ Allow(f )→ 4321, 1432, 54213,︸ ︷︷ ︸
contain consecutive 321

. . . /∈ Allow(f )
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Sarkovskii’s Theorem

An n−periodic point of a map is a point such that

f n(x) = x and f i (x) 6= x for all 1 ≤ i < n.

Theorem (Sarkovskii):

If a continuous map f of the unit interval has an m-periodic point

and `Cm in the Sarkovskii ordering

1C2C22C· · ·C2nC· · ·C5·2nC3·2nC· · ·C7·2C5·2C3·2C· · ·C7C5C3

then f must also have an `-periodic point.

Question: Is there a similar order for the permutation structure of

periodic points?
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Cycle Type

Let x be a periodic point of order n and Pat(x , f , n) = π.

The cycle type of x is π̂ ∈ Cn where

π = π1π2 . . . πn → π̂ = (π1, π2, . . . , πn).

Example: Consider G2(x) = {−2x}.

A 3-periodic orbit of G2 is:

(x ,G2(x),G 2
2 (x)) =

(
8

9
,

2

9
,

5

9

)
Giving Pat(89 ,G2, 3) = 312 and

π̂ = (3, 1, 2) = 231
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The Shape of Cycles

The representative of a 6-periodic orbit of F3(x) = {3x} is x = 13
14 .

Pat(x ,F3, 6) = st

(
13

14
,

11

14
,

5

14
,

1

14
,

3

14
,

9

14

)
= 653124

The cycle type of the orbit is π̂ = (6, 5, 3, 1, 2, 4) = 241635.
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Forcing Order

For a family of interval maps F , a cycle π̂ forces a cycle τ̂ if, for

any f ∈ F , whenever π̂ ∈ AlCyc(f ) then τ̂ ∈ AlCyc(f ) as well.

(1,3,4,2)

(1,2,4,3)
(1,5,2,3,4)

(1,2,3,4) (1,4,3,2) (1,4,3,2,5)

(1,4,2,3,5) (1,2,4,3,5) (1,5,4,2,3) (1,5,2,4,3)

(1,2,3) (1,3,2)

(1,3,4,2,5) (1,5,3,2,4)

(1,3,2,4) (1,4,2,3)

(1,2)

(1)

The forcing relations for

continuous maps, (Baldwin).
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Beta Shifts and Negative Beta Shifts

For β > 1, consider the classes of functions,

Fβ(x) = {βx} and Gβ(x) = 1− {βx}“ = ”{−βx}.

The graphs of Fβ(x) = {βx} for

(a) β = 1+
√
5

2 , (b) β = 2, and (c) β = 2.5.

The graphs of Gβ(x) = 1− {βx}“ = ”{−βx} for

(a) β = 1+
√
5

2 , (b) β = 2, and (c) β = 2.5. 8



Itineraries

Example: F3(x) = {3x}

Name the monotonic intervals: 0, 1, 2

(x ,F3(x),F 2
3 (x), . . .) = (.13, .39, .17, .51, .53, .59, .77, . . .)

→ 0 1 0 1 1 1 2 . . .

Why? Applying F3 is now a shift of the word.

Σ(w1w2w3 . . .) = w2w3 . . . .

Pat(x ,F3, 4) = Pat(010112 . . . ,Σ3, 4)

= st(010112 . . . , 10112 . . . , 0112 . . . , 112 . . .) = 1324
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Beta and Negative Beta Expansions

For Fβ(x) = {βx}, itineraries correspond to β-expansions:

x =
w1

β
+

w2

β2
+

w3

β3
+ . . . .

For Gβ(x) = {−βx}, itineraries correspond to (−β)-expansions:

x = −
(
w1 + 1

(−β)
+

w2 + 1

(−β)2
+

w3 + 1

(−β)3
+ . . .

)
.

Alternating Order: In odd positions, 0 is low and bβc is high, in

even positions, bβc is low and 0 is high.

0101 . . . <alt 0000 . . . <alt 1111 . . . <alt 1010 . . .
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Segmentations

Ask: Is π̂ a cycle of FN(x) = {Nx}?

An N-segmentation of π̂ is a sequence 0 = e0 ≤ e1 ≤ · · · ≤ eN = n

such that each segment π̂et+1π̂et+2 . . . π̂et+1
is increasing.

A 3-segmetation of

π̂ = (6, 1, 4, 3, 2, 5) = 452361

4 5 | 2 3 6 | 1

From this, define a word ω by

π = 6 1 4 3 2 5
ω =

Theorem (Archer-Elizalde): Pat(ω∞,ΣN , n) = π

min{N : π̂ ∈ AlCyc(FN)} = 1 + des(π̂)
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Negative Segmentations

Ask: Is π̂ a cycle of GN(x) = {−Nx}?

A −N-segmentation of π̂ is a sequence 0 = e0 ≤ e1 ≤ · · · ≤ ek = n

such that each segment π̂et+1π̂et+2 . . . π̂et+1
is decreasing.

A −3-segmetation of

π̂ = (6, 5, 2, 1, 4, 3) = 416325

4 1 | 6 3 2 | 5

π = 6 5 2 1 4 3

ω = 2 1 0 0 1 1

Collapsed cycles:

ω = 2011020110

Theorem (Archer-Elizalde): If ω is primitive, then

Pat(ω∞,Σ−N , n) = π

min{N : π̂ ∈ AlCyc(GN)} = 1 + asc(π̂) + ε(π̂)
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β-shifts and −β-shifts

Theorem: Let Bp(π̂) = inf{β : π̂ ∈ AlCyc(Fβ)}. Then Bp(π̂) is

equal to the largest real root of

pω(x) = xn − 1−
n∑

j=1

wjx
n−j ,

where ω = w1w2 . . .wn is the word defined by the unique

(1 + des(π̂))-segmentation of π̂.

Theorem: Let Bp(π̂) = inf{β : π̂ ∈ AlCyc(Gβ)}. Then Bp(π̂) is

equal to the largest real root of

p̄ω(x) = (−x)n − 1 +
n∑

j=1

(wj + 1)(−x)n−j ,

where ω = w1w2 . . .wn is the word defined by a (usually unique)

(1 + asc(π̂) + ε(π̂))-segmentation of π̂.

(If ε(π̂) = 1, take ω to be the smallest with respect to <alt .)
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Distributions

Theorem: The distribution of dBp(π̂)e = 1 + des(π̂) (resp.

dBp(π̂)e = 1 + asc(π̂) + ε(π̂)) is asymptotically normal with mean

µ = n+1
2 and variance σ2 = n−1

12 .

Why? Descents in cycles are normal, (Fulman).

Conjecture: The distribution of Bp(π̂) (resp. Bp(π̂)) is asymp-

totically normal with mean µ = n
2 and variance σ2 = n−1

12 .

0 1 2 3 4 5

0 1 2 3 4 5

Plots of Bp(π̂) (top) and Bp(π̂) (bottom) for π ∈ Cn and n = 3, 4, 5, 6.
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Remember that we started with patterns realized by any point in

the interval?

Come talk to me here or at FPSAC about it:

“Patterns of Negative Shifts and Signed Shifts.”
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Forcing Order

For a family of interval maps F , a cycle π̂ forces a cycle τ̂ if, for

any f ∈ F , if π̂ ∈ AlCyc(f ) then τ̂ ∈ AlCyc(f ) as well.

3142

2413
53412

2341 4123 45231

43521 24531 53124 54132

231 312

35421 54213

3421 4312

21

1

The forcing relations for

continuous maps, (Baldwin).
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