On the growth rate of the centrosymmetric permutations in a class

Justin Troyka
Dartmouth College

2017 June 29

The reverse-complement transformation

- ► The *reverse–complement* of a permutation π , denoted $rc(\pi)$, is the permutation obtained by a half-turn rotation of the diagram of π .
- ▶ A class \mathbb{C} is rc-invariant if $rc(\mathbb{C}) = \mathbb{C}$.

Centrosymmetric permutations

- A permutation π is *centrosymmetric* if $rc(\pi) = \pi$.
- ► The number of centrosymmetric permutations of size 2n is $(2n)(2n-2)\cdots(4)(2) = 2^n n!$.
- ▶ **Definition:** Let C^{rc} denote the set of centrosymmetric permutations in C.
- ▶ **Definition:** The rc–growth rate of \mathbb{C} , denoted $\operatorname{gr}^{\operatorname{rc}}(\mathbb{C})$, is the growth rate of $\mathbb{C}_{2n}^{\operatorname{rc}}$; that is,

$$\operatorname{gr}^{\operatorname{rc}}(\mathfrak{C}) = \lim_{n \to \infty} |\mathfrak{C}_{2n}^{\operatorname{rc}}|^{1/n}.$$

▶ At *Permutation Patterns* 2016, Alex Woo presented the following open problem: Which rc-invariant permutation classes \mathcal{C} satisfy $\operatorname{gr}^{\operatorname{rc}}(\mathcal{C}) = \operatorname{gr}(\mathcal{C})$?

Example

$$\mathcal{C} = \text{Av}(3412, 2143) = \text{Grid} \boxed{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$$

$$|\mathcal{C}_{n}| = {2n \choose n} - \sum_{m=0}^{n-1} 2^{n-m-1} {2m \choose m}$$
 (Atkinson 1998)

•
$$\operatorname{gr}(\mathfrak{C}) = \lim_{n \to \infty} |\mathfrak{C}_n|^{1/n} = 4.$$

$$|\mathcal{C}_{2n}^{rc}| = {2n \choose n}$$
 (T 2016).

$$gr^{rc}(\mathcal{C}) = \lim_{n \to \infty} |\mathcal{C}_{2n}^{rc}|^{1/n} = 4.$$

The big table

R	sum-closed?	gr(Av(R))	$gr^{rc}(Av(R))$
k1	Yes	$(k-1)^2$	$(k-1)^2$ (Egge 2010)
231, 312	Yes	2 (S & S 1985)	2 (Egge 2007)
321, 3412	Yes	$\frac{3+\sqrt{5}}{2}$ (West 1996)	$\frac{3+\sqrt{5}}{2}$ (Egge 2007)
321, 3142	Yes	$\frac{3+\sqrt{5}}{2}$ (West 1996)	$\frac{3+\sqrt{5}}{2}$ (L & O 2010)
321, 231, 312	Yes	$\frac{1+\sqrt{5}}{2}$ (S & S 1985)	$\frac{1+\sqrt{5}}{2}$ (T 2016)
2413, 3142	Yes	$3 + 2\sqrt{2}$ (West 1995)	$3+2\sqrt{2}$ (T 2016)
4321, 3412	Yes	4 (K & S 2003)	4 (T 2016)
4321, 3142	Yes	$2 + \sqrt{3}$ (Vatter 2012)	$2 + \sqrt{3}$ (T 2016)
321, 2143	No	2 (West 1996)	2 (L & O 2010)
3412, 2143	No	4 (Atkinson 1998)	4 (T 2016)
4231, 1324	No	$2 + \sqrt{2}$ (A, A, & V 2009)	2 (T 2016)
4321, 2143	No	$\frac{3+\sqrt{5}}{2}$ (A, A & B 2012)	2 (T 2016)

S & S = Simion & Schmidt;

K & S = Kremer & Shiu;

A, A, & V = Albert, Atkinson, & Vatter;

L & O = Lonoff & Ostroff;

A, A, & B = Albert, Atkinson, & Brignall.

- I. Counterexamples
- II. Geometric grid classes and generalized grid classes
- III. ⊕-closed classes

Counterexamples

▶ Suppose a class \mathcal{D} is *not* rc-invariant. Then

$$\mathcal{D} \cap \operatorname{rc}(\mathcal{D}) \subsetneq \mathcal{D}$$
 but $(\mathcal{D} \cap \operatorname{rc}(\mathcal{D}))^{\operatorname{rc}} = \mathcal{D}^{\operatorname{rc}}$.

- Example:
 - ▶ $\mathcal{D} = \text{Av}(312)$ (growth rate 4).
 - ▶ $\mathcal{D} \cap rc(\mathcal{D}) = Av(312, 231)$ (growth rate 2).
 - ▶ $\mathcal{D}^{rc} = (\mathcal{D} \cap rc(\mathcal{D}))^{rc} = Av(312, 231)^{rc}$, and $gr^{rc}(\mathcal{D}) = 2$.

Counterexamples from unions

▶ Suppose a class \mathcal{D} is *not* rc-invariant. Then

$$\mathcal{D} \cap \operatorname{rc}(\mathcal{D}) \subsetneq \mathcal{D}$$
 but $(\mathcal{D} \cap \operatorname{rc}(\mathcal{D}))^{\operatorname{rc}} = \mathcal{D}^{\operatorname{rc}}$.

- Example:
 - $\mathcal{D} = \text{Av}(312)$ (growth rate 4).
 - ▶ $\mathcal{D} \cap rc(\mathcal{D}) = Av(312, 231)$ (growth rate 2).
 - $\mathcal{D}^{rc} = (\mathcal{D} \cap rc(\mathcal{D}))^{rc} = Av(312, 231)^{rc}$, and $gr^{rc}(\mathcal{D}) = 2$.
- ▶ Furthermore, $\mathcal{D} \cup rc(\mathcal{D})$ is rc-invariant, and

$$\mathcal{D} \cap \mathrm{rc}(\mathcal{D}) \subsetneq \mathcal{D} \cup \mathrm{rc}(\mathcal{D}) \quad \text{but} \quad (\mathcal{D} \cap \mathrm{rc}(\mathcal{D}))^{\mathrm{rc}} = (\mathcal{D} \cup \mathrm{rc}(\mathcal{D}))^{\mathrm{rc}}.$$

So, setting $\mathcal{C} = \mathcal{D} \cup rc(\mathcal{D})$, we often find that $gr^{rc}(\mathcal{C}) < gr(\mathcal{C})$.

Counterexamples from unions

$$\mathcal{C} = \mathcal{D} \cup rc(\mathcal{D})$$
.

D	$gr(\mathcal{C})$	$\operatorname{gr}^{\operatorname{rc}}(\mathfrak{C})$	basis of C
Av(312)	4 (Knuth 1973)	2 (Egge 2007)	{ 2413, 3142, 3412, 4231, 231645, 312564 }
Av(4123)	9 (Stankova 1996)	4 (T 2017)	29 patterns
Av(4312)	9 (West 1990)	$2+\sqrt{5}$ (T 2017)	69 patterns

Counterexamples not from unions

▶ Let ℂ be either one of these two *geometric grid classes*:

- ► Every geometric grid class is *atomic* (AABRV 2013), and every rc-invariant geometric grid class is generated by its centrosymmetric elements.
- $gr(\mathcal{C}) = 2 + \sqrt{2}$, but $gr^{rc}(\mathcal{C}) = 2$.

Geometric grid classes

Let M be a centrosymmetric $\{0, 1, -1\}$ -matrix.

► The *cell graph* of M is the graph whose vertices are the non-zero entries of M, where two entries are adjacent if (1) they share a row or column and (2) there are no non-zero entries between them in their row or column.

Example:

$$\begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{pmatrix} \mapsto$$

Geometric grid classes and generalized grid classes

Let M be a centrosymmetric $\{0, 1, -1\}$ -matrix with cell graph G.

- ► Theorem on geometric grid classes (T 2017): Each of the following statements implies the next one:
 - (i) G is a forest;
 - (ii) For every vertex v of G, there is no path from v to rc(v);
 - (iii) $\operatorname{gr}^{\operatorname{rc}}(\operatorname{Geom}(M)) = \operatorname{gr}(\operatorname{Geom}(M)).$
- ► An analogous theorem holds for generalized grid classes.
- ▶ **Conjecture**: If \mathcal{C} is the monotone grid class of M, then $gr^{rc}(\mathcal{C}) = gr(\mathcal{C})$.

III. ⊕-closed classes

—-closed classes

Assume \mathcal{C} is rc-invariant and \oplus -closed.

- ▶ **Definition:** Let \mathcal{C} denote the set of \oplus -indecomposable permutations in \mathcal{C} , and let $\widetilde{\mathcal{C}}^{rc}$ denote the set of centrosymmetric \oplus -indecomposable permutations in \mathcal{C} .
- ▶ **Definition:** Let $gr(\widetilde{\mathbb{C}})$ denote the growth rate of $\widetilde{\mathbb{C}}_n$, and let $gr^{rc}(\widetilde{\mathbb{C}})$ denote the growth rate of $\widetilde{\mathbb{C}}_{2n}^{rc}$; that is,

$$gr(\widetilde{\mathfrak{C}}) = \lim_{n \to \infty} \left| \widetilde{\mathfrak{C}}_n \right|^{1/n} \qquad \text{and} \qquad gr^{rc}(\widetilde{\mathfrak{C}}) = \lim_{n \to \infty} \left| \widetilde{\mathfrak{C}}_{2n}^{rc} \right|^{1/n}.$$

- ► **Theorem** (T 2017): $\operatorname{gr^{rc}}(\mathfrak{C}) = \max \left\{ \operatorname{gr}(\mathfrak{C}), \operatorname{gr^{rc}}(\widetilde{\mathfrak{C}}) \right\}$.
- ► Corollary (T 2017): $gr^{rc}(\mathcal{C}) \geqslant gr(\mathcal{C})$.

—-closed classes

Assume \mathcal{C} is rc-invariant and \oplus -closed. Let $\xi \approx 2.31$ be the unique positive root of $x^5 - 2x^4 - x^2 - x - 1$.

► **Theorem** (T 2017): Each of the following statements implies the next one:

(i)
$$gr(\mathcal{C}) \leqslant \xi$$
; (ii) $|\widetilde{\mathcal{C}}_n|$ is bounded;

(iii)
$$gr(\widetilde{\mathcal{C}})$$
 is either 0 or 1;

(iv)
$$\operatorname{gr}^{\operatorname{rc}}(\widetilde{\mathcal{C}}) \leqslant \operatorname{gr}(\mathcal{C});$$
 (v) $\operatorname{gr}^{\operatorname{rc}}(\mathcal{C}) = \operatorname{gr}(\mathcal{C}).$

• (ii) \Rightarrow (iii) \Rightarrow (iv) are easy, and (iv) \Rightarrow (v) follows easily from the previous theorem.

How to prove (i) \Rightarrow (ii)

Pantone & Vatter, "Growth rates of permutation classes":

sequence	growth rate is the greatest real root of	bound
1, 1, 2, 4, 3, 3, 2, 1	$x^5 - 2x^4 - x^2 - x - 1$	$\xi \approx 2.30522$
1, 1, 2, 4, 3, 3, 3	$x^7 - x^6 - x^5 - 2x^4 - 4x^3 - 3x^2 - 3x - 3$	> 2.30688
1, 1, 2, 4, 4, 1, 1, 1, 1, 1, 1	$x^{11} - x^{10} - x^9 - 2x^8 - 4x^7 - 4x^6 - x^5 - x^4 - x^3 - x^2 - x - 1$	> 2.30525
1, 1, 2, 4, 4, 2	$x^6 - x^5 - x^4 - 2x^3 - 4x^2 - 4x - 2$	> 2.30692
1, 1, 2, 4, 5	$x^5 - x^4 - x^3 - 2x^2 - 4x - 5$	> 2.30902
1, 1, 2, 5, 2, 1, 1	$x^6 - 2x^5 + x^4 - 3x^3 - 2x^2 - 1$	> 2.30790
1, 1, 2, 5, 2, 2	$x^6 - x^5 - x^4 - 2x^3 - 5x^2 - 2x - 2$	> 2.31179
1, 1, 2, 5, 3	$x^5 - x^4 - x^3 - 2x^2 - 5x - 3$	> 2.31392
1, 1, 3, 3, 1, 1, 1, 1, 1, 1	$x^{10} - x^9 - x^8 - 3x^7 - 3x^6 - x^5 - x^4 - x^3 - x^2 - x - 1$	> 2.30528
1, 1, 3, 3, 2	$x^5 - x^4 - x^3 - 3x^2 - 3x - 2$	> 2.30939
1, 1, 3, 4	$x^3 - 2x^2 + x - 4$	> 2.31459

Table 1: Short legal sequences leading to growth rates of at least ξ .

sequence	growth rate is the greatest real root of
$1,1,2,3,4^{\infty}$	$x^5 - 2x^4 - x^2 - x - 1$
$1, 1, 2, 3, 4^i, 5, 3, 3, 2, 1$	$x^5 - 2x^4 - x^2 - x - 1$
$1, 1, 2, 3, 4^i, 5, 3, 3, 3$	$x^{i+4}\left(x^{5}-2x^{4}-x^{2}-x-1 ight)-x^{4}+2x^{3}+3$
$1, 1, 2, 3, 4^i, 5, 4, 1, 1, 1, 1, 1, 1$	$x^{i+8} (x^5 - 2x^4 - x^2 - x - 1) - x^8 + x^7 + 3x^6 + 1$
$1, 1, 2, 3, 4^i, 5, 4, 2$	$x^{i+3}(x^5-2x^4-x^2-x-1)-x^3+x^2+2x+2$
$1, 1, 2, 3, 4^i, 5, 5$	$x^{i+2}(x^5-2x^4-x^2-x-1)-x^2+5$
$1, 1, 2, 3, 4^i, 6, 2, 1, 1$	x^{i+4} $(x^5 - 2x^4 - x^2 - x - 1) - 2x^4 + 4x^3 + x^2 + 1$
$1, 1, 2, 3, 4^i, 6, 2, 2$	$x^{i+3} \left(x^5 - 2x^4 - x^2 - x - 1\right) - 2x^3 + 4x^2 + 2$
$1, 1, 2, 3, 4^i, 6, 3$	$x^{i+2}(x^5-2x^4-x^2-x-1)-2x^2+3x+3$
$1, 1, 2, 3, 4^i, 7, 1$	$x^{i+2} \left(x^5 - 2x^4 - x^2 - x - 1\right) - 3x^2 + 6x + 1$
$1, 1, 2, 3, 4^i, 8$	$x^{i+1}(x^5-2x^4-x^2-x-1)-4x+8$

Table 2: Long legal sequences leading to growth rates of at least ξ .

Conjectures

- ▶ **Conjecture:** If \mathcal{C} is rc-invariant and \oplus -closed, then $gr^{rc}(\mathcal{C}) = gr(\mathcal{C})$.
- ▶ **Conjecture:** If \mathcal{C} is rc-invariant, then $gr^{rc}(\mathcal{C}) \leq gr(\mathcal{C})$.
- ► The second conjecture implies the first.

THANK YOU!