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The reverse–complement transformation

3 6 2 4 5 1

rc←→

6 2 3 5 1 4

I The reverse–complement of a permutation π, denoted rc(π),
is the permutation obtained by a half-turn rotation of the
diagram of π.

I A class C is rc-invariant if rc(C) = C.



Centrosymmetric permutations

I A permutation π is centrosymmetric if rc(π) = π.
I The number of centrosymmetric permutations of size 2n is
(2n)(2n− 2) · · · (4)(2) = 2nn!.

I Definition: Let Crc denote the set of centrosymmetric
permutations in C.

I Definition: The rc–growth rate of C, denoted grrc(C), is the
growth rate of Crc

2n; that is,

grrc(C) = lim
n→∞ |Crc

2n|
1/n.

I At Permutation Patterns 2016, Alex Woo presented the
following open problem: Which rc-invariant permutation
classes C satisfy grrc(C) = gr(C)?



Example

C = Av(3412, 2143) = Grid

I |Cn| =

(
2n

n

)
−

n−1∑
m=0

2n−m−1

(
2m

m

)
(Atkinson 1998)

I gr(C) = lim
n→∞ |Cn|

1/n = 4.

I |Crc
2n| =

(
2n

n

)
(T 2016).

I grrc(C) = lim
n→∞ |Crc

2n|
1/n = 4.



The big table

R sum-closed? gr(Av(R)) grrc(Av(R))
k · · · 1 Yes (k− 1)2 (k− 1)2 (Egge 2010)
231, 312 Yes 2 (S & S 1985) 2 (Egge 2007)

321, 3412 Yes 3+
√
5

2
(West 1996) 3+

√
5

2
(Egge 2007)

321, 3142 Yes 3+
√
5

2
(West 1996) 3+

√
5

2
(L & O 2010)

321, 231, 312 Yes 1+
√
5

2
(S & S 1985) 1+

√
5

2
(T 2016)

2413, 3142 Yes 3+ 2
√
2 (West 1995) 3+ 2

√
2 (T 2016)

4321, 3412 Yes 4 (K & S 2003) 4 (T 2016)
4321, 3142 Yes 2+

√
3 (Vatter 2012) 2+

√
3 (T 2016)

321, 2143 No 2 (West 1996) 2 (L & O 2010)
3412, 2143 No 4 (Atkinson 1998) 4 (T 2016)
4231, 1324 No 2+

√
2 (A, A, & V 2009) 2 (T 2016)

4321, 2143 No 3+
√
5

2
(A, A & B 2012) 2 (T 2016)

S & S = Simion & Schmidt;
K & S = Kremer & Shiu;
A, A, & V = Albert, Atkinson, & Vatter;
L & O = Lonoff & Ostroff;
A, A, & B = Albert, Atkinson, & Brignall.
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Counterexamples

from unions

I Suppose a class D is not rc-invariant. Then

D ∩ rc(D) $ D but (D ∩ rc(D))rc = Drc.

I Example:
I D = Av(312) (growth rate 4).
I D ∩ rc(D) = Av(312, 231) (growth rate 2).
I Drc = (D ∩ rc(D))rc = Av(312, 231)rc, and grrc(D) = 2.

I Furthermore, D ∪ rc(D) is rc-invariant, and

D∩rc(D) $ D∪rc(D) but (D∩rc(D))rc = (D∪rc(D))rc.

So, setting C = D ∪ rc(D), we often find that
grrc(C) < gr(C).



Counterexamples from unions

I Suppose a class D is not rc-invariant. Then

D ∩ rc(D) $ D but (D ∩ rc(D))rc = Drc.

I Example:
I D = Av(312) (growth rate 4).
I D ∩ rc(D) = Av(312, 231) (growth rate 2).
I Drc = (D ∩ rc(D))rc = Av(312, 231)rc, and grrc(D) = 2.

I Furthermore, D ∪ rc(D) is rc-invariant, and

D∩rc(D) $ D∪rc(D) but (D∩rc(D))rc = (D∪rc(D))rc.

So, setting C = D ∪ rc(D), we often find that
grrc(C) < gr(C).



Counterexamples from unions

C = D ∪ rc(D).

D gr(C) grrc(C) basis of C

Av(312) 4 (Knuth 1973) 2 (Egge 2007)

{
2413, 3142, 3412,

4231, 231645, 312564

}
Av(4123) 9 (Stankova 1996) 4 (T 2017) 29 patterns
Av(4312) 9 (West 1990) 2+

√
5 (T 2017) 69 patterns



Counterexamples not from unions

I Let C be either one of these two geometric grid classes:

C = Geom or C = Geom

I Every geometric grid class is atomic (aabrv 2013), and
every rc-invariant geometric grid class is generated by its
centrosymmetric elements.

I gr(C) = 2+
√
2, but grrc(C) = 2.



II. Geometric grid classes and generalized grid classes



Geometric grid classes

LetM be a centrosymmetric {0, 1,−1}-matrix.
I The cell graph ofM is the graph whose vertices are the

non-zero entries ofM, where two entries are adjacent if (1)
they share a row or column and (2) there are no non-zero
entries between them in their row or column.

I Example:
1 −1 0 1 0 0

0 0 1 0 0 1

1 0 0 1 0 0

0 0 1 0 −1 1

 7→



Geometric grid classes and generalized grid classes

LetM be a centrosymmetric {0, 1,−1}-matrix with cell graph G.
I Theorem on geometric grid classes (T 2017): Each of the

following statements implies the next one:
(i) G is a forest;

(ii) For every vertex v of G, there is no path from v to rc(v);
(iii) grrc(Geom(M)) = gr(Geom(M)).

I An analogous theorem holds for generalized grid classes.
I Conjecture: If C is the monotone grid class ofM, then

grrc(C) = gr(C).



III. ⊕-closed classes



⊕-closed classes

Assume C is rc-invariant and ⊕-closed.
I Definition: Let C̃ denote the set of ⊕-indecomposable

permutations in C, and let C̃rc denote the set of
centrosymmetric ⊕-indecomposable permutations in C.

I Definition: Let gr(C̃) denote the growth rate of C̃n, and let
grrc(C̃) denote the growth rate of C̃rc

2n; that is,

gr(C̃) = lim
n→∞

∣∣∣C̃n

∣∣∣1/n and grrc(C̃) = lim
n→∞

∣∣∣C̃rc
2n

∣∣∣1/n .
I Theorem (T 2017): grrc(C) = max

{
gr(C), grrc(C̃)

}
.

I Corollary (T 2017): grrc(C) > gr(C).



⊕-closed classes

Assume C is rc-invariant and ⊕-closed. Let ξ ≈ 2.31 be the
unique positive root of x5 − 2x4 − x2 − x− 1.
I Theorem (T 2017): Each of the following statements

implies the next one:

(i) gr(C) 6 ξ; (ii) |C̃n| is bounded;

(iii) gr(C̃) is either 0 or 1;

(iv) grrc(C̃) 6 gr(C); (v) grrc(C) = gr(C).

I (ii)⇒ (iii)⇒ (iv) are easy, and (iv)⇒ (v) follows easily
from the previous theorem.



How to prove (i)⇒ (ii)

Pantone & Vatter, “Growth rates of permutation classes”:



Conjectures

I Conjecture: If C is rc-invariant and ⊕-closed, then
grrc(C) = gr(C).

I Conjecture: If C is rc-invariant, then grrc(C) 6 gr(C).
I The second conjecture implies the first.



THANK YOU!


