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Outline of talk:

» Analytic combinatorics with bivariate generating functions.

» Standard Young tableaux and involutions avoiding monotone
patterns.



Notation:

» Av(p) (Av,(p)) = p-avoiding permutations (of size n).
» Iv(p) (Iv,(p))= p-avoiding involutions (of size n).
» fp(c) = number of fixed points of o.

» For a permutation class C, the bivariate generating function
wrt fixed points is given by:

Fe(x,t) = fop(g)t‘g‘.
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From Elizalde (2004), for 7 = 321,132, or 213,
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From Elizalde (2004), for 7 = 321,132, or 213,

2
1+2t(1 —x)++/1—4t

FAV(T)(X7 t) = Z Xfp(o)tla—‘ =
o€Av(T)

By Analytic Combinatorics (Flajolet and Sedgewick 2009):
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Enumeration involutions avoiding patterns of length 3 (Simion and
Schmidt, 1985)

> For 7 =123,321,132,213, [l(7)| = (|,,})-
» For 7 = 231,312, |lv,(7)| = 2!
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Involutions avoiding patterns of length 4 (Béna, Homberger,
Pantone, and Vatter 2014)
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c=432165710098 ¢ Iv,(231)
a=(4,2,1,3).
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Fi(231) = Fivsiz) = 1282 — xt’



Theorem (Miner, Rizzolo, S. 2017)

Let I, denote a uniform random element from
Ilv,(231) = Iv,(312). Then

fp(n,) — %
p(Mn) 3N vy Z,
\/8n/27

where Z is a standard normal random variable.



Theorem (Miner, Rizzolo, S. 2017)

Let I, denote a uniform random element from
Ilv,(231) = Iv,(312). Then

fp(n,) — %
p(Mn) 3N vy Z,
\/8n/27

where Z is a standard normal random variable.

Prove using Theorem 1X.9 of Flajolet and Sedgewick on

1—t?
Fr31) = 1 22 —xt

E(fp(N,)) = (n/3) + O(1).
Var(fp(MN,)) = (8n/27) + O(1).
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c=132459101167 8 € lvy;(321).
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Fu(321)(0; t)
A = '
|v(321)(X’ t) 1— XtF|V(321)(0a t)

2
Flv(321)(Xa t) = 1— oxt + m




Theorem (Miner, Rizzolo, S. 2017)
For 7 = 321,132, or 213:

_ 2 _ Flv(‘r)(07 t)
1—2xt++v1—4t2 1- Xtan(T)(O, t)

If Ny, is a uniformly random element of Iv,(7), then

1
20) 0 X

where X follows a Rayleigh(1) distribution with density function
f(x) = xe /2.

Fiu)(x, 1)



Avoiding monotone patterns and standard Young Tableaux



Classic Results

> 7= (k+1)k---21, pg =12+ k(k + 1).
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Classic Results
» 7o = (k+1)k---21, pp =12+ - k(k + 1).
> v, (7%) (or lvy(pk)) is in bijection with standard Young

tableaux with at most k rows (or k columns) through RSK.
[Schensted, 1961]

e
ot
o 5
o hd 3]4[7]10
PN 1/2]6[8]9]
*
EPYRd



Classic Results
> 7= (k+1)k---21, pg =12+ k(k + 1).

> v, (7%) (or lvy(pk)) is in bijection with standard Young
tableaux with at most k rows (or k columns) through RSK.
[Schensted, 1961]

» Fixed points of 7 = number of odd columns.
[Schutzenberger, 1963]
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Theorem (Matsumoto 2008)

Let (Aj)i<i<k be the ranked eigenvalues of a traceless k x k GOE
matrix. For an involution 7, let \j(w) denote the length of the ith
row of the tableaux of m under RSK. For I, chosen uniformly from

IVn(Tk):
<\/§ (A,-(I‘In) - Z)) —a (Ni)i<i<k-
1<i<k

Moreover, for any fixed d > 0,

i (z?f‘;‘k“f—l(m — (M)} < d) 0.



Theorem (Miner, Rizzolo, S. 2017)

Fix k € {2,3,...}. Let (Ni)1<i<k be the ranked eigenvalues of a
traceless k x k GOE matrix and let I, be a uniformly random
element of Iv,((k + 1)k ---321).

1. If k is even then

k
\/Efp(”n) —d Y (1Y,
j=1

2. If k is odd then

\/E (fp(ﬂn) - %) .y jzk;(—l)fﬂ/\j.



Theorem (Miner, Rizzolo, S. 2017)

Fix k € {2,3,...}. Let (Ni)1<i<k be the ranked eigenvalues of a
traceless k x k GOE matrix and let I, be a uniformly random
element of Iv,((k + 1)k ---321).

1. If k is even then

k
\/Efp(”n) —d Y (1Y,
j=1

2. If k is odd then
k
k n )
- _ = _1VY+1ip.
VE (- 1) = > -1y
J:

Note fp(Mn) = >_;_1 Aoj—1(Ma) — A2;(M5).



Theorem (Miner, Rizzolo, S. 2017)
If T, is a uniformly random element in Iv,(123--- k(k 4+ 1)) then

fp(n2n) —d Xeven

and
fp(M2n-1) —d Xodd »

where Xeven has density function given by

(f) i is even
P(Xeven = i) = q 2! ’
0 i is odd,

and Xodq has density function given by

(2 i is odd
P(Xoda = i) = ¢ 27} ’

0 i is even.




Markov chain C with state space S = {0,1,..., k}, and transition
matrix P with probabilities

i

ko j=i—1
Pij=q1-¢ j=i+1
0 otherwise.



Markov chain C with state space S = {0,1,..., k}, and transition
matrix P with probabilities

% . j=i—1
Pij=q1-¢ j=i+1
0 otherwise.

Lemma
The chain C is periodic of period 2. As d — oo, Cy approaches
alternation between vectors p and q € S, where

(f) I is even
pi=q 2"
0 otherwise,

and

k
o — {2(;)1 i is odd

0 otherwise.



Fix d > 0 and pick a Young diagram of size n — d with k rows

[ L[ []]

If minimum separation is less than d total number of Young
diagrams of size n containing the smaller is k9.
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Weights on Young diagrams \ of size n.
| 2 f)\ =
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number of standard fillings of A
A

= number of ways to fill d extra boxes after filling A.
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number of standard fillings of A
A

= number of ways to fill d extra boxes after filling A.
Two measures on standard Young diagrams:

5

and M2 = LS)C{
Z'y fW Z'y f’Ys’(}7

p1 =

By Matsumoto P(s¢ < k9) — 0



Thanks!



