

Staircases, dominoes and leaves: Bounds on gr(Av(1324))

David Bevan

University of Strathclyde (Based on joint work with **Robert Brignall**, **Andrew Elvey Price** & **Jay Pantone**)

Permutation Patterns 2017, Háskólinn í Reykjavík, Ísland

29th June 2017

Bounds on the growth rate of 1324-avoiders

Av(1324) is the only unenumerated class avoiding a pattern of length 4.

$$\operatorname{gr}(\mathcal{C}) = \lim_{n \to \infty} |\mathcal{C}_n|^{1/n}$$

	Lower	Upper
2004: Bóna		288
2005: Bóna	9	
2006: Albert et al.	9.47	
2012: Claesson, Jelínek & Steingrímsson [†]		16
2014: Bóna		13.93
2015: Bóna		13.74
2015: B.	9.81	

2015: Conway & Guttmann estimate $gr(\text{Av}(1324)) \approx 11.60 \pm 0.01$

 $^{^\}dagger An$ upper bound of 13.002 follows from an unproven conjecture.

Bounds on the growth rate of 1324-avoiders

Av(1324) is the only unenumerated class avoiding a pattern of length 4.

$$\operatorname{gr}(\mathcal{C}) = \lim_{n \to \infty} |\mathcal{C}_n|^{1/n}$$

	Lower	Upper
2004: Bóna		288
2005: Bóna	9	
2006: Albert et al.	9.47	
2012: Claesson, Jelínek & Steingrímsson†		16
2014: Bóna		13.93
2015: Bóna		13.74
2015: B.	9.81	
This work	10.27	13.5

2015: Conway & Guttmann estimate $gr(\text{Av}(1324)) \approx 11.60 \pm 0.01$

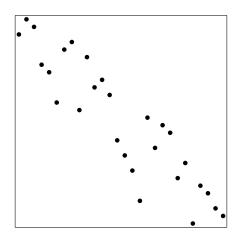
[†]An upper bound of 13.002 follows from an unproven conjecture.

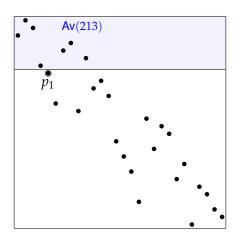
The staircase

The infinite decreasing (Av(213), Av(132)) staircase:

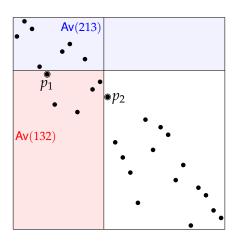
$$S = \begin{bmatrix} Av(213) \\ Av(132) & Av(213) \\ Av(132) & Av(213) \\ Av(132) & Av(132) \end{bmatrix}$$

Proposition

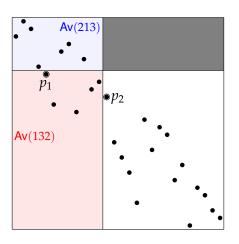




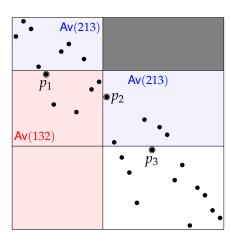
• *p*₁ uppermost 1 in a 213



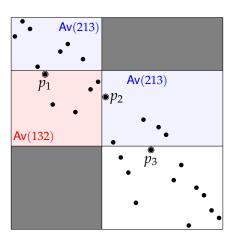
- *p*₁ uppermost 1 in a 213
- p_2 leftmost 2 in a 132 consisting of points below p_1 divider



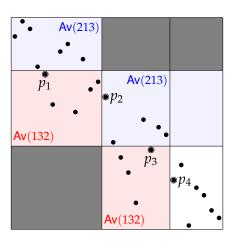
- p_2 leftmost 2 in a 132 consisting of points below p_1 divider
- No points above p_1 and to the right of p_2



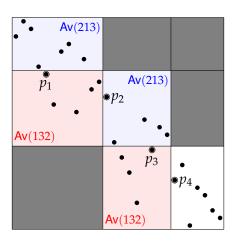
- p_2 leftmost 2 in a 132 consisting of points below p_1 divider
- p_3 uppermost 1 in a 213 consisting of points to right of p_2 divider



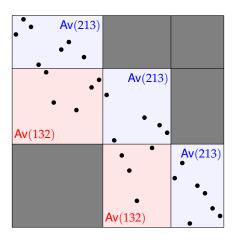
- p_3 uppermost 1 in a 213 consisting of points to right of p_2 divider
- No points to the left of p₂ and below p₃



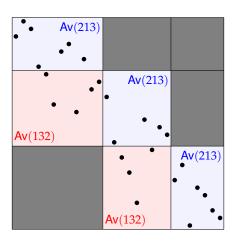
- p_3 uppermost 1 in a 213 consisting of points to right of p_2 divider
- p_4 leftmost 2 in a 132 consisting of points below p_3 divider



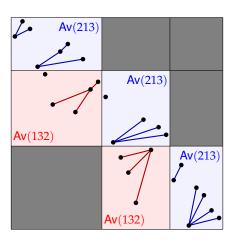
- p_4 leftmost 2 in a 132 consisting of points below p_3 divider
- No points above p_3 and to the right of p_4



• Terminates after no more than n/2 steps.

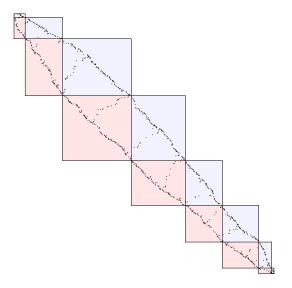


- Terminates after no more than n/2 steps.
- Gridding is greedy: each cell contains as many points as possible.



- Hasse graph of Av(213) is skew-decomposable forest of up-trees.
- Hasse graph of Av(132) is skew-decomposable forest of down-trees.

The greedy gridding of a large 1324-avoider



Data provided by Einar Steingrímsson.

A domino is a gridded permutation in

Av(213)
Av(132)

that avoids 1324.

A domino is a gridded permutation in

Av(213) Av(132)

that avoids 1324.

Important:

 $\notin \mathcal{D}$ (\mathcal{D} = the set of dominoes)

A domino is a gridded permutation in

Av(213) Av(132)

that avoids 1324.

Important:

 $\notin \mathcal{D}$ (\mathcal{D} = the set of dominoes)

Theorem

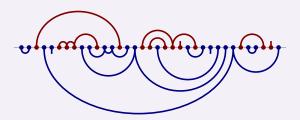
The number of n-point dominoes is $\frac{2(3n+3)!}{(n+2)!(2n+3)!}$. $gr(\mathcal{D}) = 27/4$.

Theorem

 $\frac{2(3n+3)!}{(n+2)!(2n+3)!}. \quad gr(\mathcal{D}) = 27/4.$ *The number of n-point dominoes is*

Proof.

Bijection between dominoes and certain arch configurations.



Functional equation solved using iterated discriminants.

Theorem

The number of n-point dominoes is $\frac{2(3n+3)!}{(n+2)!(2n+3)!}$. $gr(\mathcal{D}) = 27/4$.

Definition

Jay (v. tr.) To confirm a conjectural enumeration by asking Jay Pantone.

Example: "I doubt that this can be Jayed."

Jayable (adj.)

Example: "Perhaps this sequence is Jayable."

Theorem

The number of n-point dominoes is $\frac{2(3n+3)!}{(n+2)!(2n+3)!}$. $gr(\mathcal{D}) = 27/4$.

A familiar sequence

Dominoes are equinumerous to

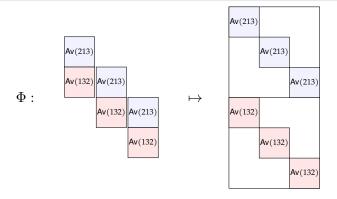
- West-2-stack-sortable permutations
- Rooted nonseparable planar maps

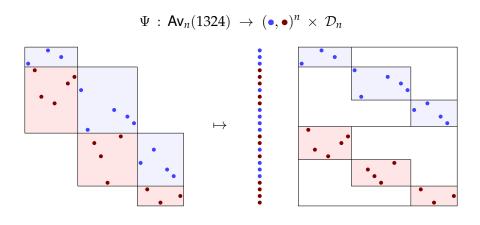
Open problem

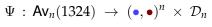
Find a bijection between dominoes and another combinatorial structure.

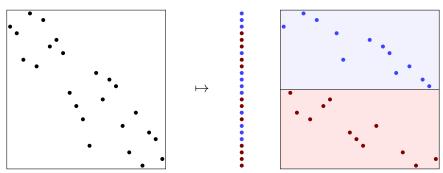
Mapping a 1324-avoider to a domino

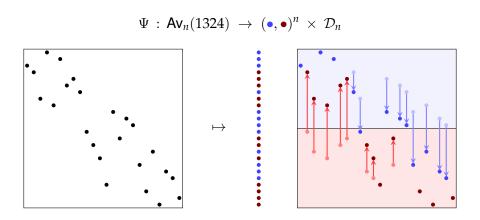
- Greedy grid the permutation.
- Interpret the gridded permutation as a sequence of dominoes.
- Use Φ to construct a large domino, splitting the small dominoes.
- Φ is not injective; it discards vertical interleaving information.



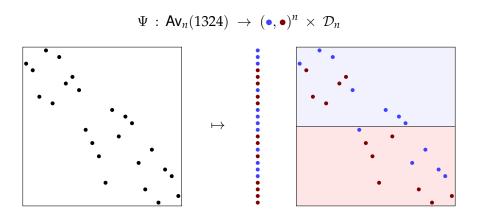






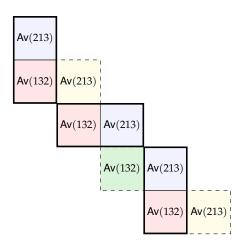


• The vertical interleaving can be recovered from the •• sequence.



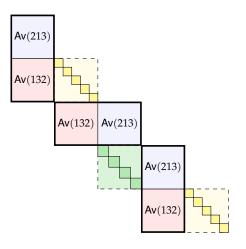
- The vertical interleaving can be recovered from the •• sequence.
- Ψ is an injection. $\operatorname{gr}(\operatorname{Av}(1324)) \leqslant 2 \times 27/4 = 13.5$

Lower bound (1)



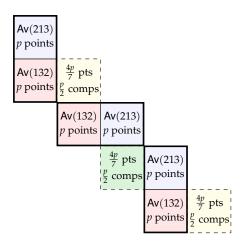
Decompose staircase into dominoes and connecting cells.

Lower bound (1)



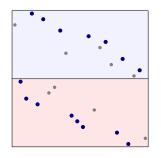
• To avoid 1324, position blue/red points between yellow/green skew indecomposable components.

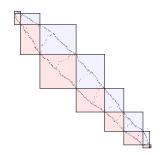
Lower bound (1)



Optimal values yield $|gr(Av(1324))| \ge 81/8 = 10.125$

Leaves of a domino

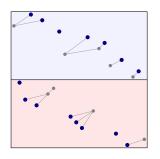


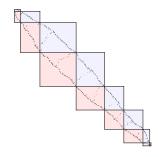


Leaves

- left-to-right minima of lower cell
- right-to-left maxima of upper cell

Leaves of a domino

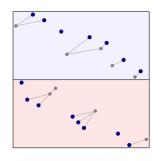


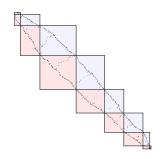


Leaves

- left-to-right minima of lower cell
- right-to-left maxima of upper cell
- leaves of trees in Hasse graphs

Leaves of a domino





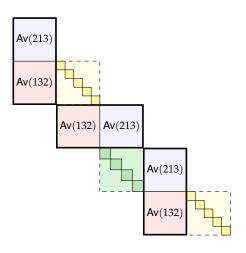
Leaves

- left-to-right minima of lower cell
- right-to-left maxima of upper cell

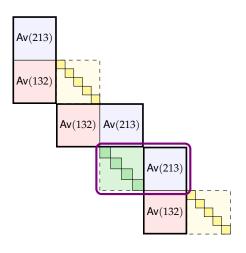
Theorem

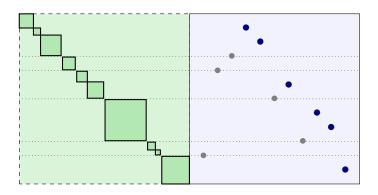
The expected number of leaves in an n-point domino is 5n/9.

Better control of the interleaving

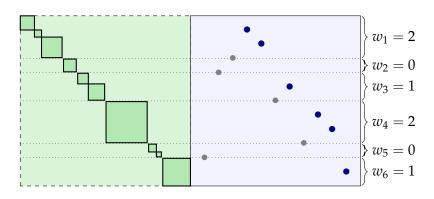


Better control of the interleaving

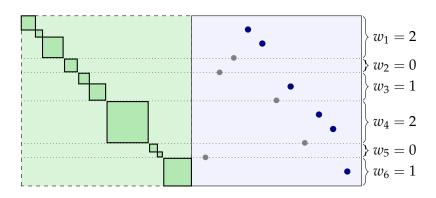




• If every non-leaf occurs *between* yellow/green components, leaves can be *arbitrarily interleaved* without creating a 1324.



- The non-leaves split a cell into a sequence of strips.
- w_i : width of *i*th strip (number of leaves in strip)



• w_i : width of *i*th strip (number of leaves in strip)

Theorem

The expected number of empty strips in an n-point domino is 5n/27.

• Which strip widths *minimise* the number of ways of interleaving?

• Which strip widths *minimise* the number of ways of interleaving?

Lemma

The worst case for interleaving is when the leaves are distributed as evenly as possibly between the strips.

- Which strip widths *minimise* the number of ways of interleaving
 - ▶ if at least ⁵/₉ of the points are leaves
 - ▶ and at least $\frac{5}{12} = (\frac{5}{27})/(\frac{4}{9})$ of the strips are empty?

Lemma

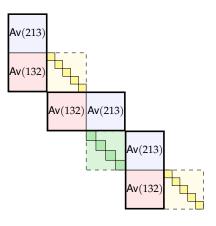
The worst case for interleaving is when the leaves are distributed as evenly as possibly between the strips.

- Which strip widths *minimise* the number of ways of interleaving
 - ▶ if at least ⁵/₉ of the points are leaves
 - ▶ and at least $\frac{5}{12} = (\frac{5}{27})/(\frac{4}{9})$ of the strips are empty?
- $\frac{5}{12}$ of the strips are empty
- no strips have 1 leaf
- $\frac{1}{2}$ of the strips have 2 leaves
- $\frac{1}{12}$ of the strips have 3 leaves

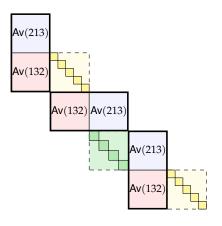
Lemma

The worst case for interleaving is when the leaves are distributed as evenly as possibly between the strips.

Lower bound (2)

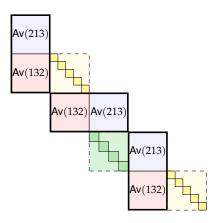


Lower bound (2)



• $gr(Av(1324)) \ge 10.27101292824530...$

Lower bound (2)



- $gr(Av(1324)) \ge 10.27101292824530...$
- This value is a root of a polynomial of degree 104, whose smallest coefficient has 86 digits.

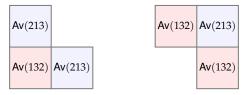
• Conjecture of Claesson, Jelínek & Steingrímsson

- Conjecture of Claesson, Jelínek & Steingrímsson
- Bijection between dominoes and something else

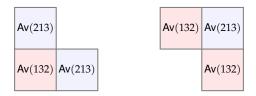
- Conjecture of Claesson, Jelínek & Steingrímsson
- Bijection between dominoes and something else
- Improvement on the (crude) upper bound

- Conjecture of Claesson, Jelínek & Steingrímsson
- Bijection between dominoes and something else
- Improvement on the (crude) upper bound
- Expected proportion of k-leaf strips

- Conjecture of Claesson, Jelínek & Steingrímsson
- Bijection between dominoes and something else
- Improvement on the (crude) upper bound
- Expected proportion of k-leaf strips
- Trominoes



- Conjecture of Claesson, Jelínek & Steingrímsson
- Bijection between dominoes and something else
- Improvement on the (crude) upper bound
- Expected proportion of k-leaf strips
- Trominoes
- "Turning the corner" seems to require new ideas



Thanks!

