# Prolific permutations and permuted packings

### Bridget Eileen Tenner DePaul University

#### Joint work with David Bevan and Cheyne Homberger

Prolific permutations and permuted packings

Bevan-Homberger-Tenner

We will describe permutations of size n both as:

words  $\pi(1) \cdots \pi(n) \in S_n$  (to capture the idea of "pattern"), and plots of points  $\{(i, \pi(i)) : 1 \le i \le n\} \subset \mathbb{R}^2$  (for our proof)

**Example.**  $31524 \in S_5$ 



### Pattern poset

Write  $\sigma \preceq \pi$  if  $\pi$  contains a  $\sigma$ -pattern.

The pattern poset  $\mathcal{P}$  is  $\bigcup_{k>1} S_k$ , ordered by  $\leq$ .



The poset is complicated, as we already know and appreciate.

Principal order ideals have many forms, even from the same rank.



In particular, note the different widths in these pictures.

$$\pi \in S_n$$
 is k-prolific if  $\left| \{ \sigma \in S_{n-k} : \sigma \preceq \pi \} \right| = \binom{n}{k}$ 

I.e., if each (n - k)-subset of letters in  $\pi$  forms a distinct pattern.

I.e., if  $\pi$  has maximally many descendants k generations down in  $\mathcal{P}$ .



Example. 1234 is not 1- or 2-prolific.

Example. 1243 is not 1- or 2-prolific.

Example. 2413 is 1-prolific, but not 2-prolific.

### Do k-prolific permutations exist for all k?

If  $w \in S_n$  is k-prolific, how big must n be, as a function of k?

How common are prolific permutations?

#### Thm. *k*-prolific permutations exist for every *k*.

Thm. For any  $n \ge k^2/2 + 2k + 1$ , there exists a k-prolific permutation in  $S_n$ .

In fact, this is strict: there is no k-prolific permutation in  $S_n$  when  $n < k^2/2 + 2k + 1$ .

The **breadth** of  $\pi$  is

$$\operatorname{br}(\pi) = \min_{i,j} \left\{ |i - j| + |\pi(i) - \pi(j)| \right\}$$

This is the minimum taxicab distance in the plot of  $\pi$ . Certainly  $br(\pi) \ge 2$ .

**Example.** br(31524) = 3 and br(274915836) = 4.

Prolific permutations and permuted packings

Bevan-Homberger-Tenner

Lem.  $\pi$  is k-prolific iff  $br(\pi) \ge k + 2$ .

**Example.** Consider  $\pi = 31524$ , which has breadth 3.

 $\pi$  is 1-prolific, with  $\binom{5}{1}$  children: 1423, 2413, 3124, 2143, 3142.

 $\pi$  is not 2-prolific because it has only  $5 < \binom{5}{2}$  grandchildren in  $\mathcal{P}$ : 123, 132, 213, 231, and 312.

Example. 274915836 (breadth 4) is 2-prolific.

**Prop.** Deleting a single entry from a permutation decreases breath by at most 1.

Proof: If  $br(\sigma) < br(\pi)$ , then  $br(\pi) = |i - j| + |\pi(i) - \pi(j)|$ , and  $\sigma$  was obtained by deleting a point with x-coordinate between *i* and *j*, or y-coordinate between  $\pi(i)$  and  $\pi(j)$ .



The deleted point could not have satisfied both of those requirements, or  $br(\pi)$  would be smaller than had been claimed.

# Proving the lemma, part 1

Lem. If  $\pi$  is k-prolific, then  $br(\pi) \ge k + 2$ . Proof: If  $|i - j| + |\pi(i) - \pi(j)| \le k + 1$ , then we have:



where the number of points in the shaded regions is at most k - 1.

Deleting {shaded points}  $\cup$  {( $i, \pi(i)$ )} results in the same perm as deleting {shaded points}  $\cup$  {( $i, \pi(i)$ )}, so  $\pi$  is not k-prolific.

**Lem.** If  $br(\pi) \ge k + 2$ , then  $\pi$  is k-prolific.

This is notably more complicated.

Induct on k, and use chain graphs to describe how two different occurrences of the same pattern might be contained in  $\pi$ .

Chain graphs have a lot of structure: if there are two ways to get the same pattern in  $S_{n-k}$ , then two points in the plot must have taxicab distance < k + 2, meaning  $br(\pi) < k + 2$ .

Next up: What does breadth mean for constructing *k*-prolific permutations?

A packing  $\Pi$  of *n* translates of a tile *T* is a **permuted packing** if  $\Pi = \{T + (i, \pi(i))\}$  for some  $\pi \in S_n$ .

Let  $D_k$  be a diamond whose diagonal has length k + 2.



k-prolific perms are in bijection with permuted packings of  $D_k$ .

# Examples



Let **minprol**(k) be the minimum value of n for which there exists a k-prolific permutation in  $S_n$ .

We get size requirements for k-prolific perms from area restrictions. This gives us a lower bound:  $\lceil k^2/2 + 2k + 1 \rceil \leq \text{minprol}(k)$ We get the upper bound by explicit construction.

Thm. minprol(
$$k$$
) =  $\lceil k^2/2 + 2k + 1 \rceil$ 

In fact, we can "grow" the constructed *k*-prolific permutations, so – Thm. There exist *k*-prolific perms in  $S_n$  for all  $n \ge \lfloor \frac{k^2}{2} + 2k + 1 \rfloor$ . For a given k > 1, how does the number of k-prolific permutations of size n grow with n?

**Blackburn-Homberger-Winkler:** For large *n*, a random *n*-permutation is *k*-prolific with probability  $e^{-k^2-k}$ .

How many distinct k-prolific permutations exist of minimal size?

**Conjecture:** For odd k, the minimal permutation we construct, and its symmetries, are the only ones.

Variations on prolificity?