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Notation

We will describe permutations of size n both as:

words ⇡(1) · · ·⇡(n) 2 Sn (to capture the idea of “pattern”), and

plots of points {(i ,⇡(i)) : 1  i  n} ⇢ R2 (for our proof)

Example. 31524 2 S5
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Pattern poset

Write � � ⇡ if ⇡ contains a �-pattern.

The pattern poset P is
S

k�1 Sk , ordered by �.

1

12 21

123 132 213 231 312 321

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321
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Principal order ideals

The poset is complicated, as we already know and appreciate.

Principal order ideals have many forms, even from the same rank.

1234

123

12

1

1243

132 123

21 12

1

2413

312 213 132 231

21 12

1

In particular, note the different widths in these pictures.
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The definition

⇡ 2 Sn is k-prolific if

����{� 2 Sn�k : � � ⇡}
���� =

✓n
k

◆
.

I.e., if each (n � k)-subset of letters in ⇡ forms a distinct pattern.

I.e., if ⇡ has maximally many descendants k generations down in P.
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Examples

1234

123

12

1

1243

132 123

21 12

1

2413

312 213 132 231

21 12

1

Example. 1234 is not 1- or 2-prolific.

Example. 1243 is not 1- or 2-prolific.

Example. 2413 is 1-prolific, but not 2-prolific.
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The questions

Do k-prolific permutations exist for all k?

If w 2 Sn is k-prolific, how big must n be, as a function of k?

How common are prolific permutations?
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Some answers

Thm. k-prolific permutations exist for every k .

Thm. For any n � k2/2 + 2k + 1, there exists a k-prolific
permutation in Sn.

In fact, this is strict: there is no k-prolific permutation in Sn when
n < k

2/2 + 2k + 1.
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Tool: breadth

The breadth of ⇡ is

br(⇡) = min
i ,j

�
|i � j | + |⇡(i) � ⇡(j)|

 

This is the minimum taxicab distance in the plot of ⇡.
Certainly br(⇡) � 2.

Example. br(31524) = 3 and br(274915836) = 4.
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Key to our proof

Lem. ⇡ is k-prolific iff br(⇡) � k + 2.

Example. Consider ⇡ = 31524, which has breadth 3.

⇡ is 1-prolific, with
�5
1
�

children: 1423, 2413, 3124, 2143, 3142.

⇡ is not 2-prolific because it has only 5 <
�5
2
�

grandchildren in P:
123, 132, 213, 231, and 312.

Example. 274915836 (breadth 4) is 2-prolific.
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Working toward the lemma

Prop. Deleting a single entry from a permutation decreases breath
by at most 1.
Proof: If br(�) < br(⇡), then br(⇡) = |i � j |+ |⇡(i)� ⇡(j)|, and �
was obtained by deleting a point with x-coordinate between i and j ,
or y -coordinate between ⇡(i) and ⇡(j).

⇡:

(i ,⇡(i))

(j ,⇡(j))

The deleted point could not have satisfied both of those
requirements, or br(⇡) would be smaller than had been claimed.
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Proving the lemma, part 1

Lem. If ⇡ is k-prolific, then br(⇡) � k + 2.

Proof: If |i � j |+ |⇡(i)� ⇡(j)|  k + 1, then we have:

(i ,⇡(i))

(j ,⇡(j))

where the number of points in the shaded regions is at most k � 1.

Deleting {shaded points} [ {(i ,⇡(i))} results in the same perm as
deleting {shaded points} [ {(i ,⇡(i))}, so ⇡ is not k-prolific.
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Proving the lemma, part 2

Lem. If br(⇡) � k + 2, then ⇡ is k-prolific.

This is notably more complicated.

Induct on k , and use chain graphs to describe how two different
occurrences of the same pattern might be contained in ⇡.

Chain graphs have a lot of structure: if there are two ways to get
the same pattern in Sn�k , then two points in the plot must have
taxicab distance < k + 2, meaning br(⇡) < k + 2.

Next up: What does breadth mean for constructing k-prolific
permutations?
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Permuted packings

A packing ⇧ of n translates of a tile T is a permuted packing if
⇧ = {T + (i ,⇡(i))} for some ⇡ 2 Sn.

Let Dk be a diamond whose diagonal has length k + 2.

k + 2

k-prolific perms are in bijection with permuted packings of Dk .
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Examples
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Construction bounds

Let minprol(k) be the minimum value of n for which there exists a
k-prolific permutation in Sn.

We get size requirements for k-prolific perms from area restrictions.

This gives us a lower bound: dk2/2 + 2k + 1e  minprol(k)

We get the upper bound by explicit construction.

Thm. minprol(k) = dk2/2 + 2k + 1e

In fact, we can “grow” the constructed k-prolific permutations, so –

Thm. There exist k-prolific perms in Sn for all n � dk2

2 + 2k + 1e.

Prolific permutations and permuted packings Bevan–Homberger–Tenner



Additional questions and progress

For a given k > 1, how does the number of k-prolific permutations
of size n grow with n?

Blackburn-Homberger-Winkler: For large n, a random
n-permutation is k-prolific with probability e

�k2�k .

How many distinct k-prolific permutations exist of minimal size?

Conjecture: For odd k , the minimal permutation we construct,
and its symmetries, are the only ones.

Variations on prolificity?
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