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Definitions

Let n ∈ Z+.

Definition

A set partition of [n] is a collection of sets B1,B2, . . . ,Bm, pairwise
disjoint, with B1 ∪ · · · ∪ Bm = [n]. The order of sets does not
matter.

We will call these sets blocks of the partition.

Since the order of sets is irrelevant, we will order the Bi in
increasing order of smallest element, and denote the set
partition with slashes between the blocks. (e.g.
{5, 2, 3} ∪ {4, 6, 1} is denoted 146/235).
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Definitions

Let n, k ∈ Z+, and π, π′ be set partitions of n, k respectively.

Definition

We say that π contains (respectively avoids) π′ if there exists
(respectively does not exist) an increasing injection f : [k]→ [n]
such that for all i , j ∈ [k] the following are equivalent:

i and j are in the same set in π′.

f (i) and f (j) are in the same set in π.

In other words, π contains π′ if and only if we can restrict π to a
k-element subset of [n], so that the resulting set partition is
order-isomorphic to π.
(Example: 146/235 contains the partition 12/34, as we can see by
restricting 146/235 to the set {2, 3, 4, 6}.)
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Asymptotic Results

Question

What are the possible growth rates of a pattern class of set
partitions? What pattern classes give which growth rates?

Permutations Set Partitions
(Marcus-Tardos Theorem) (G., Pálvölgyi)

f (n) < cn f (n) < cn

f (n) = n! f (n) = Bn

cnn
n
2 < f (n) < c ′nn

n
2

cnn
2n
3 < f (n) < c ′nn

2n
3

cnn
3n
4 < f (n) < c ′nn

3n
4

...
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Main Result

Theorem (G., Pálvölgyi)

Let P be a pattern class of set partitions. Then one of the
following cases holds.

1 P consists of all set partitions

2 Pn is empty for all sufficiently large n

3 There exists d ∈ Z+ and constants c ′ > c > 0 such that

cnn(1− 1
d )n < |Pn| < c ′nn(1− 1

d )n

Question

Which pattern classes fall into which growth rates? That is, which
d corresponds to a given P?
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Permutability

Definition

Given n, d ∈ Z+, and σ1, . . . , σd ∈ Sn, we can construct a set
partition of [(d + 1)n] as follows: there will be n blocks
B1, . . . ,Bn, with Bi = {i , n + σ1(i), 2n + σ2(i), . . . , dn + σd(i)}.
We call this set partition [σ1, . . . , σd ].

Example: [132, 321] = 149/268/357
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Permutability

Definition

Let π be a set partition. Then the permutability of π, denoted
pm(π) is the minimum positive integer d such that π is contained
in a set partition of the form [σ1, . . . , σd ], for some m ∈ Z+ and
σ1, . . . , σd ∈ Sm.

Example: 12/34 has permutability 2. (Contained in
145/236 = [21, 12], not in [σ] for any σ.)

Definition (Alternate)

The set partition π of [n] has permutability d if and only if [n] can
be divided into d + 1 intervals such that each interval contains at
most one element of each block of π, but it cannot be divided into
d intervals in that way.
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More Specific Main Result

Theorem (G., Pálvölgyi)

Let P be a pattern class of set partitions. Then one of the
following cases holds.

1 P consists of all set partitions

2 Pn is empty for all sufficiently large n

3 There exists d ∈ Z+ and constants c ′ > c > 0 such that

cnn(1− 1
d )n < |Pn| < c ′nn(1− 1

d )n

In this case, d is the smallest permutability among set
partitions that do not occur in P (except when d = 1; then
this may be 0).

Example: if P = Av(π), then d = pm(π).
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Lower Bound

Theorem

cnn(1− 1
d )n < |Pn| < c ′nn(1− 1

d )n,

where d is the smallest permutability not occurring in P.

How many set partitions of [n] have permutability at most d − 1?

This includes all set partitions of the form [σ1, . . . , σd−1], where
σi ∈ S n

d
, so at least ((n

d

)
!
)d−1

>
( n

ed

) d−1
d

n
,

proving the lower bound of the theorem.
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Upper Bound

Theorem

cnn(1− 1
d )n < |Pn| < c ′nn(1− 1

d )n,

where d is the smallest permutability not occurring in P.

The upper bound is more complicated; we will describe an
important lemma.

If P is a pattern class not containing some π of permutability d ,
then P ⊂ Av(π) ⊂ Av([σ1, . . . , σd ]) for some permutations
σ1, . . . , σd .

Thus it suffices to show that Avn([σ1, . . . , σd ]) < c ′nn(1− 1
d )n for

some c ′.
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Hypergraphs

We have a ‘commutative diagram’ of generalizations:

Permutations 0− 1 Matrices

Set Partitions Ordered Hypergraphs

Perm Mats

σ→[σ] 0−1 mat=bip. graph

Blocks=Edges

So it makes sense to generalize to ordered hypergraphs to obtain
information about asymptotics.

Definition

A d-permutation hypergraph be the hypergraph corresponding to
some set partition of the form [σ1, . . . , σd−1] (that is, the image of
[σ1, . . . , σd−1] under the bottom map in the diagram above).

Benjamin Gunby Asymptotics of Pattern Classes of Set Partition and Permutation d-tuple Avoidance



Hypergraphs

We have a ‘commutative diagram’ of generalizations:

Permutations 0− 1 Matrices

Set Partitions Ordered Hypergraphs

Perm Mats

σ→[σ] 0−1 mat=bip. graph

Blocks=Edges

So it makes sense to generalize to ordered hypergraphs to obtain
information about asymptotics.

Definition

A d-permutation hypergraph be the hypergraph corresponding to
some set partition of the form [σ1, . . . , σd−1] (that is, the image of
[σ1, . . . , σd−1] under the bottom map in the diagram above).

Benjamin Gunby Asymptotics of Pattern Classes of Set Partition and Permutation d-tuple Avoidance



Hypergraphs

We have a ‘commutative diagram’ of generalizations:

Permutations 0− 1 Matrices

Set Partitions Ordered Hypergraphs

Perm Mats

σ→[σ] 0−1 mat=bip. graph

Blocks=Edges

So it makes sense to generalize to ordered hypergraphs to obtain
information about asymptotics.

Definition

A d-permutation hypergraph be the hypergraph corresponding to
some set partition of the form [σ1, . . . , σd−1] (that is, the image of
[σ1, . . . , σd−1] under the bottom map in the diagram above).

Benjamin Gunby Asymptotics of Pattern Classes of Set Partition and Permutation d-tuple Avoidance



Hypergraphs

We have a ‘commutative diagram’ of generalizations:

Permutations 0− 1 Matrices

Set Partitions Ordered Hypergraphs

Perm Mats

σ→[σ] 0−1 mat=bip. graph

Blocks=Edges

So it makes sense to generalize to ordered hypergraphs to obtain
information about asymptotics.

Definition

A d-permutation hypergraph be the hypergraph corresponding to
some set partition of the form [σ1, . . . , σd−1] (that is, the image of
[σ1, . . . , σd−1] under the bottom map in the diagram above).

Benjamin Gunby Asymptotics of Pattern Classes of Set Partition and Permutation d-tuple Avoidance



Hypergraph Avoidance

We want to define a notion of hypergraph avoidance that extends
our notion of set partition avoidance.

Definition

An ordered hypergraph G contains (respectively avoids) an ordered
hypergraph H if and only if there exists (respectively does not
exist) an order-preserving injection V (H)→ V (G ) and an injection
E (H)→ E (G ) that are compatible: If E is sent to E ′, then all
vertices in E are sent to vertices of E ′ (E may have fewer vertices
than E ′).

For example, G contains the hypergraph H on [4] with edges
{1, 3} and {2, 4} if and only if there exist two different edges E1

and E2 of G and vertices v1, v
′
1 ∈ E1, v2, v

′
2 ∈ E2 with

v1 < v2 < v ′1 < v ′2. (A single 4-vertex edge would not suffice.)
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Main Lemma

Similarly to bounding the number of ones in a 0− 1 matrix that
avoids a permutation matrix, we need a lemma that bounds the
number of edges (or similar) in an ordered hypergraph that avoids
a d-permutation hypergraph.

Lemma (G., Pálvölgyi)

Let H be a d-permutation hypergraph. Then there exists c such
that any ordered hypergraph G on [n] that avoids H has∑

E∈E(G)

|E | < cnd−1.

This lemma is interesting in its own right:

The d = 2 case is a prior theorem of (independently)
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The case where G is also a d-permutation hypergraph is a
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Permutation-Tuple Avoidance

Getting back to permutations:

Given a d-tuple (σ1, . . . , σd) of
permutations, we’ve constructed a set partition: [σ1, . . . , σd ]. This
gives a notion of avoidance on d-tuples of permutations of the
same size, which is fairly natural on its own:

Definition

Let σ1, . . . , σd ∈ Sn and σ′1, . . . , σ
′
d ∈ Sm be permutations. Then

the d-tuple (σ1, . . . , σd) contains (respectively avoids) the d-tuple
(σ1, . . . , σd) if there exist (respectively do not exist) indices
i1, . . . , im ∈ [n] with i1 < · · · < im satisfying the property that for
any j, σj(i1) · · ·σj(im) has the same relative ordering as
σ′j(1) · · ·σ′j(m).

In other words, a d-tuple T1 contains another d-tuple T2 if and
only if each permutation in T1 contains the corresponding
permutation in T2 at the same location.
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Permutation-Tuple Avoidance

Example: d = 2, (σ′1, σ
′
2) = (21, 12).

(σ1, σ2) avoids (21, 12) if and only if any inversion in σ1 is also an
inversion of σ2.

σ1 ≤ σ2 in the Weak Bruhat Order.
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Permutation-Tuple Asymptotics

If (σ′1, . . . , σ
′
d) avoids (σ1, . . . , σd), with σ1, . . . , σd ∈ Sn, then

[σ′1, . . . , σ
′
d ] is a set partition of [(d + 1)n] avoiding [σ1, . . . , σd ].

Avn((σ1, . . . , σd)) ≤ Av(d+1)n([σ1, . . . , σd ])

< c ′nnn(1− 1
d )(d+1)

= c ′nn

(
d2−1

d

)
n

for some c ′.
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Permutation-Tuple Asymptotics

The lower bound also holds! (As long as σ1, . . . , σd have size > 1)

We can assume σ1, . . . , σd have size 2. We can assume further
that they’re all 12.
A (slightly reinterpreted) result of Brightwell says that

Av(12, . . . , 12) > cnn

(
d2−1

d

)
n

for some c .
Put it all together:

Theorem (G., Pálvölgyi)

Let σ1, . . . , σd ∈ Sm, m > 1. There exist constants c ′ > c > 0
such that

cnn

(
d2−1

d

)
n
< Avn((σ1, . . . , σd)) < c ′nn

(
d2−1

d

)
n
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An Open Question

Question

Can we classify pattern classes of permutation d-tuples to within
an exponential?

Our theorem solves the problem for classes with 1 basis element.
The product of a pattern class of d-tuples with one of d ′-tuples
gives a pattern class of d + d ′-tuples.
For d-tuples, can obtain within an exponential factor of nαn, for
α = d − 1

d1
− · · · − 1

dk
, di ∈ Z+,

∑
di ≤ d . Can we obtain

anything else?

Benjamin Gunby Asymptotics of Pattern Classes of Set Partition and Permutation d-tuple Avoidance



An Open Question

Question

Can we classify pattern classes of permutation d-tuples to within
an exponential?

Our theorem solves the problem for classes with 1 basis element.

The product of a pattern class of d-tuples with one of d ′-tuples
gives a pattern class of d + d ′-tuples.
For d-tuples, can obtain within an exponential factor of nαn, for
α = d − 1

d1
− · · · − 1

dk
, di ∈ Z+,

∑
di ≤ d . Can we obtain

anything else?

Benjamin Gunby Asymptotics of Pattern Classes of Set Partition and Permutation d-tuple Avoidance



An Open Question

Question

Can we classify pattern classes of permutation d-tuples to within
an exponential?

Our theorem solves the problem for classes with 1 basis element.
The product of a pattern class of d-tuples with one of d ′-tuples
gives a pattern class of d + d ′-tuples.

For d-tuples, can obtain within an exponential factor of nαn, for
α = d − 1

d1
− · · · − 1

dk
, di ∈ Z+,

∑
di ≤ d . Can we obtain

anything else?

Benjamin Gunby Asymptotics of Pattern Classes of Set Partition and Permutation d-tuple Avoidance



An Open Question

Question

Can we classify pattern classes of permutation d-tuples to within
an exponential?

Our theorem solves the problem for classes with 1 basis element.
The product of a pattern class of d-tuples with one of d ′-tuples
gives a pattern class of d + d ′-tuples.
For d-tuples, can obtain within an exponential factor of nαn, for
α = d − 1

d1
− · · · − 1

dk
, di ∈ Z+,

∑
di ≤ d . Can we obtain

anything else?

Benjamin Gunby Asymptotics of Pattern Classes of Set Partition and Permutation d-tuple Avoidance



Other Open Questions

What does the permutability statistic look like?

Can we compute the exponential factors in any of these cases?
(Analogous to Stanley-Wilf limits)

For Av((12, 12)), we should have cn(n!)
3
2 .

Exponential factor is not currently known!√
π
2 ?
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Thank You!
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