Asymptotics of Pattern Classes of Set Partition and Permutation *d*-tuple Avoidance

Benjamin Gunby

Harvard Department of Mathematics

June 2017

Benjamin Gunby Asymptotics of Pattern Classes of Set Partition and Permutation

This research is joint work with Dömötör Pálvölgyi.

伺 ト く ヨ ト く ヨ ト

This research is joint work with Dömötör Pálvölgyi.

Paper hopefully on arXiv soon!

Let $n \in \mathbb{Z}^+$.

Definition

A set partition of [n] is a collection of sets B_1, B_2, \ldots, B_m , pairwise disjoint, with $B_1 \cup \cdots \cup B_m = [n]$. The order of sets does not matter.

伺 ト く ヨ ト く ヨ ト

-

Let $n \in \mathbb{Z}^+$.

Definition

A set partition of [n] is a collection of sets B_1, B_2, \ldots, B_m , pairwise disjoint, with $B_1 \cup \cdots \cup B_m = [n]$. The order of sets does not matter.

• We will call these sets *blocks* of the partition.

Let $n \in \mathbb{Z}^+$.

Definition

A set partition of [n] is a collection of sets B_1, B_2, \ldots, B_m , pairwise disjoint, with $B_1 \cup \cdots \cup B_m = [n]$. The order of sets does not matter.

- We will call these sets *blocks* of the partition.
- Since the order of sets is irrelevant, we will order the B_i in increasing order of smallest element, and denote the set partition with slashes between the blocks. (e.g. {5,2,3} ∪ {4,6,1} is denoted 146/235).

伺 と く ヨ と く ヨ と

伺 ト く ヨ ト く ヨ ト

э

Definition

We say that π contains (respectively avoids) π' if there exists (respectively does not exist) an increasing injection $f : [k] \to [n]$ such that for all $i, j \in [k]$ the following are equivalent:

- *i* and *j* are in the same set in π' .
- f(i) and f(j) are in the same set in π .

Definition

We say that π contains (respectively avoids) π' if there exists (respectively does not exist) an increasing injection $f : [k] \to [n]$ such that for all $i, j \in [k]$ the following are equivalent:

- *i* and *j* are in the same set in π' .
- f(i) and f(j) are in the same set in π .

In other words, π contains π' if and only if we can restrict π to a *k*-element subset of [n], so that the resulting set partition is order-isomorphic to π .

伺 ト イ ヨ ト イ ヨ ト

Definition

We say that π contains (respectively avoids) π' if there exists (respectively does not exist) an increasing injection $f : [k] \to [n]$ such that for all $i, j \in [k]$ the following are equivalent:

- *i* and *j* are in the same set in π' .
- f(i) and f(j) are in the same set in π .

In other words, π contains π' if and only if we can restrict π to a *k*-element subset of [*n*], so that the resulting set partition is order-isomorphic to π .

(Example: 146/235 contains the partition 12/34, as we can see by restricting 146/235 to the set $\{2, 3, 4, 6\}$.)

What are the possible growth rates of a pattern class of set partitions? What pattern classes give which growth rates?

What are the possible growth rates of a pattern class of set partitions? What pattern classes give which growth rates?

Permutations	Set Partitions
(Marcus-Tardos Theorem)	(G., Pálvölgyi)
$f(n) < c^n$	$f(n) < c^n$

What are the possible growth rates of a pattern class of set partitions? What pattern classes give which growth rates?

Permutations	Set Partitions
(Marcus-Tardos Theorem)	(G., Pálvölgyi)
$f(n) < c^n$	$f(n) < c^n$
f(n) = n!	$f(n) = B_n$

What are the possible growth rates of a pattern class of set partitions? What pattern classes give which growth rates?

Permutations	Set Partitions
(Marcus-Tardos Theorem)	(G., Pálvölgyi)
$f(n) < c^n$	$f(n) < c^n$
f(n) = n!	$f(n) = B_n$
	$c^n n^{\frac{n}{2}} < f(n) < c'^n n^{\frac{n}{2}}$

同 ト イ ヨ ト イ ヨ ト

What are the possible growth rates of a pattern class of set partitions? What pattern classes give which growth rates?

Permutations	Set Partitions
(Marcus-Tardos Theorem)	(G., Pálvölgyi)
$f(n) < c^n$	$f(n) < c^n$
f(n) = n!	$f(n) = B_n$
	$c^n n^{\frac{n}{2}} < f(n) < c'^n n^{\frac{n}{2}}$
	$c^n n^{\frac{2n}{3}} < f(n) < c'^n n^{\frac{2n}{3}}$

御 と くきと くきと

What are the possible growth rates of a pattern class of set partitions? What pattern classes give which growth rates?

Permutations	Set Partitions
(Marcus-Tardos Theorem)	(G., Pálvölgyi)
$f(n) < c^n$	$f(n) < c^n$
f(n) = n!	$f(n) = B_n$
	$c^n n^{\frac{n}{2}} < f(n) < c'^n n^{\frac{n}{2}}$
	$c^n n^{\frac{2n}{3}} < f(n) < c'^n n^{\frac{2n}{3}}$
	$c^n n^{\frac{3n}{4}} < f(n) < c'^n n^{\frac{3n}{4}}$

同 ト イ ヨ ト イ ヨ ト

Let \mathcal{P} be a pattern class of set partitions. Then one of the following cases holds.

白 ト ・ ヨ ト ・ ヨ ト

э

Let \mathcal{P} be a pattern class of set partitions. Then one of the following cases holds.

 $\textcircled{O} \ \mathcal{P} \ \text{consists of all set partitions}$

A B > A B >

Let \mathcal{P} be a pattern class of set partitions. Then one of the following cases holds.

- $\textcircled{O} \ \mathcal{P} \ \textit{consists of all set partitions}$
- **2** \mathcal{P}_n is empty for all sufficiently large n

Let \mathcal{P} be a pattern class of set partitions. Then one of the following cases holds.

- $\textcircled{O} \ \mathcal{P} \ \textit{consists of all set partitions}$
- 2 \mathcal{P}_n is empty for all sufficiently large n
- **③** There exists $d \in \mathbb{Z}^+$ and constants c' > c > 0 such that

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n}$$

Let \mathcal{P} be a pattern class of set partitions. Then one of the following cases holds.

- $\textcircled{O} \ \mathcal{P} \ \textit{consists of all set partitions}$
- 2 \mathcal{P}_n is empty for all sufficiently large n
- **③** There exists $d \in \mathbb{Z}^+$ and constants c' > c > 0 such that

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n}$$

Question

Which pattern classes fall into which growth rates? That is, which d corresponds to a given \mathcal{P} ?

.

Given $n, d \in \mathbb{Z}^+$, and $\sigma_1, \ldots, \sigma_d \in S_n$, we can construct a set partition of [(d + 1)n] as follows: there will be n blocks B_1, \ldots, B_n , with $B_i = \{i, n + \sigma_1(i), 2n + \sigma_2(i), \ldots, dn + \sigma_d(i)\}$. We call this set partition $[\sigma_1, \ldots, \sigma_d]$.

Given $n, d \in \mathbb{Z}^+$, and $\sigma_1, \ldots, \sigma_d \in S_n$, we can construct a set partition of [(d + 1)n] as follows: there will be n blocks B_1, \ldots, B_n , with $B_i = \{i, n + \sigma_1(i), 2n + \sigma_2(i), \ldots, dn + \sigma_d(i)\}$. We call this set partition $[\sigma_1, \ldots, \sigma_d]$.

Example: [132, 321] = 149/268/357

Let π be a set partition. Then the permutability of π , denoted $pm(\pi)$ is the minimum positive integer d such that π is contained in a set partition of the form $[\sigma_1, \ldots, \sigma_d]$, for some $m \in \mathbb{Z}^+$ and $\sigma_1, \ldots, \sigma_d \in S_m$.

Let π be a set partition. Then the permutability of π , denoted $pm(\pi)$ is the minimum positive integer d such that π is contained in a set partition of the form $[\sigma_1, \ldots, \sigma_d]$, for some $m \in \mathbb{Z}^+$ and $\sigma_1, \ldots, \sigma_d \in S_m$.

Example: 12/34 has permutability 2. (Contained in 145/236 = [21, 12], not in $[\sigma]$ for any σ .)

Let π be a set partition. Then the permutability of π , denoted $pm(\pi)$ is the minimum positive integer d such that π is contained in a set partition of the form $[\sigma_1, \ldots, \sigma_d]$, for some $m \in \mathbb{Z}^+$ and $\sigma_1, \ldots, \sigma_d \in S_m$.

Example: 12/34 has permutability 2. (Contained in 145/236 = [21, 12], not in $[\sigma]$ for any σ .)

Definition (Alternate)

The set partition π of [n] has permutability d if and only if [n] can be divided into d + 1 intervals such that each interval contains at most one element of each block of π , but it cannot be divided into d intervals in that way.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Let \mathcal{P} be a pattern class of set partitions. Then one of the following cases holds.

- $\ \, \bullet \ \, \mathcal{P} \ \, \text{consists of all set partitions}$
- **2** \mathcal{P}_n is empty for all sufficiently large n
- **③** There exists $d \in \mathbb{Z}^+$ and constants c' > c > 0 such that

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n}$$

Let \mathcal{P} be a pattern class of set partitions. Then one of the following cases holds.

- $\ \, \bullet \ \, \mathcal{P} \ \, \text{consists of all set partitions}$
- **2** \mathcal{P}_n is empty for all sufficiently large n
- **③** There exists $d \in \mathbb{Z}^+$ and constants c' > c > 0 such that

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n}$$

In this case, d is the smallest permutability among set partitions that do not occur in \mathcal{P} (except when d = 1; then this may be 0).

Let \mathcal{P} be a pattern class of set partitions. Then one of the following cases holds.

- $\ \, \bullet \ \, \mathcal{P} \ \, \text{consists of all set partitions}$
- **2** \mathcal{P}_n is empty for all sufficiently large n
- $\textbf{ o There exists } d \in \mathbb{Z}^+ \text{ and constants } c' > c > 0 \text{ such that }$

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n}$$

In this case, d is the smallest permutability among set partitions that do not occur in \mathcal{P} (except when d = 1; then this may be 0).

Example: if $\mathcal{P} = Av(\pi)$, then $d = pm(\pi)$.

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n},$$

where d is the smallest permutability not occurring in \mathcal{P} .

How many set partitions of [n] have permutability at most d - 1?

A B > A B >

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n},$$

where d is the smallest permutability not occurring in \mathcal{P} .

How many set partitions of [n] have permutability at most d - 1? This includes all set partitions of the form $[\sigma_1, \ldots, \sigma_{d-1}]$, where $\sigma_i \in S_{\frac{n}{d}}$, so at least

$$\left(\left(\frac{n}{d}\right)!\right)^{d-1}$$

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n},$$

where d is the smallest permutability not occurring in \mathcal{P} .

How many set partitions of [n] have permutability at most d - 1? This includes all set partitions of the form $[\sigma_1, \ldots, \sigma_{d-1}]$, where $\sigma_i \in S_{\frac{n}{d}}$, so at least

$$\left(\left(\frac{n}{d}\right)!\right)^{d-1}$$

$$> \left(\frac{n}{ed}\right)^{\frac{d-1}{d}n},$$

proving the lower bound of the theorem.

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n},$$

where d is the smallest permutability not occurring in \mathcal{P} .

The upper bound is more complicated; we will describe an important lemma.

A B > A B >

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n},$$

where d is the smallest permutability not occurring in \mathcal{P} .

The upper bound is more complicated; we will describe an important lemma.

If \mathcal{P} is a pattern class not containing some π of permutability d, then $\mathcal{P} \subset Av(\pi) \subset Av([\sigma_1, \ldots, \sigma_d])$ for some permutations $\sigma_1, \ldots, \sigma_d$.

ヨッ イヨッ イヨッ

$$c^n n^{\left(1-\frac{1}{d}\right)n} < |\mathcal{P}_n| < c'^n n^{\left(1-\frac{1}{d}\right)n},$$

where d is the smallest permutability not occurring in \mathcal{P} .

The upper bound is more complicated; we will describe an important lemma.

If \mathcal{P} is a pattern class not containing some π of permutability d, then $\mathcal{P} \subset Av(\pi) \subset Av([\sigma_1, \ldots, \sigma_d])$ for some permutations $\sigma_1, \ldots, \sigma_d$. Thus it suffices to show that $Av([\sigma_1, \ldots, \sigma_d]) \subset c'^n p^{(1-\frac{1}{d})^n}$ for

Thus it suffices to show that $Av_n([\sigma_1, \ldots, \sigma_d]) < c'^n n^{(1-\frac{1}{d})n}$ for some c'.

伺い イラト イラト

We have a 'commutative diagram' of generalizations:

▶ < 문 > < 문 >

We have a 'commutative diagram' of generalizations: Permutations $\xrightarrow{\text{Perm Mats}} 0 - 1$ Matrices $\downarrow \sigma \rightarrow [\sigma]$ $\downarrow 0-1 \text{ mat=bip. graph}$ Set Partitions $\xrightarrow{\text{Blocks}=\text{Edges}}$ Ordered Hypergraphs

聞き くぼき くぼき 二階

We have a 'commutative diagram' of generalizations: Permutations $\xrightarrow{\text{Perm Mats}} 0 - 1$ Matrices $\downarrow \sigma \rightarrow [\sigma]$ $\downarrow 0-1 \text{ mat}=\text{bip. graph}$ Set Partitions $\xrightarrow{\text{Blocks}=\text{Edges}}$ Ordered Hypergraphs So it makes sense to generalize to ordered hypergraphs to obtain information about asymptotics. We have a 'commutative diagram' of generalizations: Permutations $\xrightarrow{\text{Perm Mats}} 0 - 1$ Matrices $\downarrow \sigma \rightarrow [\sigma]$ $\downarrow 0-1 \text{ mat=bip. graph}$ Set Partitions $\xrightarrow{\text{Blocks}=\text{Edges}}$ Ordered Hypergraphs So it makes sense to generalize to ordered hypergraphs to obtain information about asymptotics.

Definition

A d-permutation hypergraph be the hypergraph corresponding to some set partition of the form $[\sigma_1, \ldots, \sigma_{d-1}]$ (that is, the image of $[\sigma_1, \ldots, \sigma_{d-1}]$ under the bottom map in the diagram above).

< 回 > < 回 > < 回 > … 回

• • = • • = •

Definition

An ordered hypergraph G contains (respectively avoids) an ordered hypergraph H if and only if there exists (respectively does not exist) an order-preserving injection $V(H) \rightarrow V(G)$ and an injection $E(H) \rightarrow E(G)$ that are compatible:

Definition

An ordered hypergraph G contains (respectively avoids) an ordered hypergraph H if and only if there exists (respectively does not exist) an order-preserving injection $V(H) \rightarrow V(G)$ and an injection $E(H) \rightarrow E(G)$ that are compatible: If E is sent to E', then all vertices in E are sent to vertices of E' (E may have fewer vertices than E').

Definition

An ordered hypergraph G contains (respectively avoids) an ordered hypergraph H if and only if there exists (respectively does not exist) an order-preserving injection $V(H) \rightarrow V(G)$ and an injection $E(H) \rightarrow E(G)$ that are compatible: If E is sent to E', then all vertices in E are sent to vertices of E' (E may have fewer vertices than E').

For example, G contains the hypergraph H on [4] with edges $\{1,3\}$ and $\{2,4\}$ if and only if there exist two *different* edges E_1 and E_2 of G and vertices $v_1, v'_1 \in E_1, v_2, v'_2 \in E_2$ with $v_1 < v_2 < v'_1 < v'_2$. (A single 4-vertex edge would not suffice.)

Similarly to bounding the number of ones in a 0-1 matrix that avoids a permutation matrix, we need a lemma that bounds the number of edges (or similar) in an ordered hypergraph that avoids a *d*-permutation hypergraph.

Similarly to bounding the number of ones in a 0-1 matrix that avoids a permutation matrix, we need a lemma that bounds the number of edges (or similar) in an ordered hypergraph that avoids a *d*-permutation hypergraph.

Lemma (G., Pálvölgyi)

Let H be a d-permutation hypergraph. Then there exists c such that any ordered hypergraph G on [n] that avoids H has

$$\sum_{E \in E(G)} |E| < cn^{d-1}.$$

Similarly to bounding the number of ones in a 0-1 matrix that avoids a permutation matrix, we need a lemma that bounds the number of edges (or similar) in an ordered hypergraph that avoids a *d*-permutation hypergraph.

Lemma (G., Pálvölgyi)

Let H be a d-permutation hypergraph. Then there exists c such that any ordered hypergraph G on [n] that avoids H has

$$\sum_{E \in E(G)} |E| < cn^{d-1}.$$

This lemma is interesting in its own right:

Similarly to bounding the number of ones in a 0-1 matrix that avoids a permutation matrix, we need a lemma that bounds the number of edges (or similar) in an ordered hypergraph that avoids a *d*-permutation hypergraph.

Lemma (G., Pálvölgyi)

Let H be a d-permutation hypergraph. Then there exists c such that any ordered hypergraph G on [n] that avoids H has

$$\sum_{E \in E(G)} |E| < cn^{d-1}.$$

This lemma is interesting in its own right:

• The *d* = 2 case is a prior theorem of (independently) Klazar-Marcus and Balogh-Bollobas-Morris.

・ 同 ト ・ ヨ ト ・ ヨ ト

Similarly to bounding the number of ones in a 0-1 matrix that avoids a permutation matrix, we need a lemma that bounds the number of edges (or similar) in an ordered hypergraph that avoids a *d*-permutation hypergraph.

Lemma (G., Pálvölgyi)

Let H be a d-permutation hypergraph. Then there exists c such that any ordered hypergraph G on [n] that avoids H has

$$\sum_{E \in E(G)} |E| < cn^{d-1}.$$

This lemma is interesting in its own right:

- The *d* = 2 case is a prior theorem of (independently) Klazar-Marcus and Balogh-Bollobas-Morris.
- The case where G is also a d-permutation hypergraph is a theorem of Klazar-Marcus.

Permutation-Tuple Avoidance

Getting back to permutations:

∃ → < ∃</p>

Getting back to permutations: Given a *d*-tuple $(\sigma_1, \ldots, \sigma_d)$ of permutations, we've constructed a set partition: $[\sigma_1, \ldots, \sigma_d]$.

Getting back to permutations: Given a *d*-tuple $(\sigma_1, \ldots, \sigma_d)$ of permutations, we've constructed a set partition: $[\sigma_1, \ldots, \sigma_d]$. This gives a notion of avoidance on *d*-tuples of permutations of the same size, which is fairly natural on its own:

b 4 3 b 4 3 b

Getting back to permutations: Given a *d*-tuple $(\sigma_1, \ldots, \sigma_d)$ of permutations, we've constructed a set partition: $[\sigma_1, \ldots, \sigma_d]$. This gives a notion of avoidance on *d*-tuples of permutations of the same size, which is fairly natural on its own:

Definition

Let $\sigma_1, \ldots, \sigma_d \in S_n$ and $\sigma'_1, \ldots, \sigma'_d \in S_m$ be permutations. Then the d-tuple $(\sigma_1, \ldots, \sigma_d)$ contains (respectively avoids) the d-tuple $(\sigma_1, \ldots, \sigma_d)$ if there exist (respectively do not exist) indices $i_1, \ldots, i_m \in [n]$ with $i_1 < \cdots < i_m$ satisfying the property that for any $j, \sigma_j(i_1) \cdots \sigma_j(i_m)$ has the same relative ordering as $\sigma'_j(1) \cdots \sigma'_j(m)$.

伺 と く ヨ と く ヨ と …

Getting back to permutations: Given a *d*-tuple $(\sigma_1, \ldots, \sigma_d)$ of permutations, we've constructed a set partition: $[\sigma_1, \ldots, \sigma_d]$. This gives a notion of avoidance on *d*-tuples of permutations of the same size, which is fairly natural on its own:

Definition

Let $\sigma_1, \ldots, \sigma_d \in S_n$ and $\sigma'_1, \ldots, \sigma'_d \in S_m$ be permutations. Then the d-tuple $(\sigma_1, \ldots, \sigma_d)$ contains (respectively avoids) the d-tuple $(\sigma_1, \ldots, \sigma_d)$ if there exist (respectively do not exist) indices $i_1, \ldots, i_m \in [n]$ with $i_1 < \cdots < i_m$ satisfying the property that for any $j, \sigma_j(i_1) \cdots \sigma_j(i_m)$ has the same relative ordering as $\sigma'_j(1) \cdots \sigma'_j(m)$.

In other words, a *d*-tuple T_1 contains another *d*-tuple T_2 if and only if each permutation in T_1 contains the corresponding permutation in T_2 at the same location.

イロト 不得 トイヨト イヨト 二日

Example: d = 2, $(\sigma'_1, \sigma'_2) = (21, 12)$.

- ∢ ≣ ▶

- A 🗐 🕨

-

Example: d = 2, $(\sigma'_1, \sigma'_2) = (21, 12)$.

 (σ_1, σ_2) avoids (21, 12) if and only if any inversion in σ_1 is also an inversion of σ_2 .

ヨト イヨト イヨト

Example: d = 2, $(\sigma'_1, \sigma'_2) = (21, 12)$.

 (σ_1, σ_2) avoids (21, 12) if and only if any inversion in σ_1 is also an inversion of σ_2 .

 $\sigma_1 \leq \sigma_2$ in the Weak Bruhat Order.

- 4 E b 4 E b

If $(\sigma'_1, \ldots, \sigma'_d)$ avoids $(\sigma_1, \ldots, \sigma_d)$, with $\sigma_1, \ldots, \sigma_d \in S_n$, then $[\sigma'_1, \ldots, \sigma'_d]$ is a set partition of [(d+1)n] avoiding $[\sigma_1, \ldots, \sigma_d]$.

If
$$(\sigma'_1, \ldots, \sigma'_d)$$
 avoids $(\sigma_1, \ldots, \sigma_d)$, with $\sigma_1, \ldots, \sigma_d \in S_n$, then $[\sigma'_1, \ldots, \sigma'_d]$ is a set partition of $[(d+1)n]$ avoiding $[\sigma_1, \ldots, \sigma_d]$.

$$\begin{aligned} \mathsf{Av}_n((\sigma_1,\ldots,\sigma_d)) &\leq \mathsf{Av}_{(d+1)n}([\sigma_1,\ldots,\sigma_d]) \\ &< c'^n n^{n\left(1-\frac{1}{d}\right)(d+1)} \\ &= c'^n n^{\left(\frac{d^2-1}{d}\right)n} \end{aligned}$$

for some c'.

→ 3 → 4 3

The lower bound also holds! (As long as $\sigma_1, \ldots, \sigma_d$ have size > 1)

A B + A B +

The lower bound also holds! (As long as $\sigma_1, \ldots, \sigma_d$ have size > 1) We can assume $\sigma_1, \ldots, \sigma_d$ have size 2. We can assume further that they're all 12.

A B + A B +

The lower bound also holds! (As long as $\sigma_1, \ldots, \sigma_d$ have size > 1) We can assume $\sigma_1, \ldots, \sigma_d$ have size 2. We can assume further that they're all 12.

A (slightly reinterpreted) result of Brightwell says that

 $Av(12,\ldots,12) > c^n n^{\left(\frac{d^2-1}{d}\right)n}$ for some c.

The lower bound also holds! (As long as $\sigma_1, \ldots, \sigma_d$ have size > 1) We can assume $\sigma_1, \ldots, \sigma_d$ have size 2. We can assume further that they're all 12.

A (slightly reinterpreted) result of Brightwell says that $Av(12,...,12) > c^n n^{\left(\frac{d^2-1}{d}\right)n}$ for some *c*. Put it all together:

Theorem (G., Pálvölgyi)

Let $\sigma_1,\ldots,\sigma_d\in S_m,\ m>1.$ There exist constants c'>c>0 such that

$$c^n n^{\left(\frac{d^2-1}{d}\right)n} < Av_n((\sigma_1,\ldots,\sigma_d)) < c'^n n^{\left(\frac{d^2-1}{d}\right)n}$$

Can we classify pattern classes of permutation d-tuples to within an exponential?

白 ト ・ ヨ ト ・ ヨ ト

э

Can we classify pattern classes of permutation d-tuples to within an exponential?

Our theorem solves the problem for classes with 1 basis element.

- - E + - E +

Can we classify pattern classes of permutation d-tuples to within an exponential?

Our theorem solves the problem for classes with 1 basis element. The product of a pattern class of *d*-tuples with one of *d'*-tuples gives a pattern class of d + d'-tuples.

Can we classify pattern classes of permutation d-tuples to within an exponential?

Our theorem solves the problem for classes with 1 basis element. The product of a pattern class of *d*-tuples with one of *d'*-tuples gives a pattern class of d + d'-tuples. For *d*-tuples, can obtain within an exponential factor of $n^{\alpha n}$, for $\alpha = d - \frac{1}{d_1} - \cdots - \frac{1}{d_k}$, $d_i \in \mathbb{Z}^+$, $\sum d_i \leq d$. Can we obtain anything else?

伺 ト く ヨ ト く ヨ ト

A B > A B >

Can we compute the exponential factors in any of these cases? (Analogous to Stanley-Wilf limits)

Can we compute the exponential factors in any of these cases? (Analogous to Stanley-Wilf limits)

• For Av((12, 12)), we should have $c^n(n!)^{\frac{3}{2}}$.

Can we compute the exponential factors in any of these cases? (Analogous to Stanley-Wilf limits)

- For Av((12, 12)), we should have $c^n(n!)^{\frac{3}{2}}$.
- Exponential factor is not currently known!
- $\sqrt{\frac{\pi}{2}}$?

Thank You!

3

э