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Example 1

What are the permutations π′ ∈ S3 that 1324 covers?

1324⇒ 132 is a sub-permutation

1324⇒ 134 ∼ 123 is a sub-permutation

1324⇒ 124 ∼ 123 is a sub-permutation

1324⇒ 324 ∼ 213 is a sub-permutation

132, 123, and 213 are the three-element permutations covered
by 1324.
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Example 2

What are the permutations π′ ∈ S4 that 123 “upcovers” or
“is contained in?”?
The answer is 10 = 32 + 1 and n2 + 1 in general, via
Lemma 1 in Allison-G-Hawley-Kay (2013).
The proof relies on arguing that the answer is(n+1

n

)
· (n + 1)− 2n = n2 + 1.

So 123 and 321 jointly upcover 20 permutations in S4.
No single other permutation upcovers all the remaining
4-permutations, but 231 and 132 can be verified to jointly
do the job.
Thus “C4,3 = 4”, where Cn+1,n is the smallest number of
n-permutations that must be selected so that each
(n + 1)-permutation contains at least one of the selected
permutations.
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Two Natural Questions motivated by a question of
Robert Brignall, PP 2011

1. Minimal Order κn,n+k

What is the size κn,n+k of a minimal set A ⊆ Sn+k such that
each π′ ∈ Sn is covered by some π ∈ A?

That is, what is the minimum number of permutations on n + k
elements necessary to cover every permutation on n elements?
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Two Natural Questions

2. Minimal Order Cn+k ,n

What is the order Cn+k ,n of a minimal set A ⊆ Sn such that
each π′ ∈ Sn+k covers some π ∈ A?

That is, what is the minimum number of permutations on n
elements necessary to upcover every permutation on n + k
elements?
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Outline of Work

The work of Allison et al (2013), referenced earlier, studies
the first problem for k = 1.
In this work we study κn,n+k for k ≥ 2.
In this work we also study Cn+1,n.
Both sets of results focus on asymptotics as n→∞ (k is
fixed in the first of these two cases).
The case of Cn+k ,n for k ≥ 2 has not yet been addressed.
We also study threshold behavior for the covering problem,
k ≥ 2 (k = 1 done earlier)
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Case: k = 1

Results from Allison et al., 2013
For k = 1, we have

(n + 1)!
n2 (1 + o(1)) ≤ κn,n+1 ≤

log n
n2 (n + 1)!(1 + o(1))

The general case for covering n permutations by n + k
permutations is similar.
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Results for General k

Theorem
Let k ≥ 1. Then

k !
(n + k)!

n2k (1 + o(1)) ≤ κn,n+k ≤ k
(n + k)!

n2k log(n)(1 + o(1)).

The upper bound is proved as follows:
Randomly select Y permutations in Sn+k . These are
expected to cover a bunch of n-permutations.
Find the expected number Z (Y ) of additional permutations
necessary to cover all of Sn

Minimize the total number of necessary permutations
Y + Z (Y ) with respect to Y
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Results for General k

Theorem
Let k ≥ 1. Then

k !
(n + k)!

n2k (1 + o(1)) ≤ κn,n+k ≤ k
(n + k)!

n2k log(n)(1 + o(1)).

The lower bound is trivially obtained as follows:
An n + k -permutation covers at most

(n+k
n

)
π′ ∈ Sn.

κn,n+k
(n+k

n

)
≥ n!

for n� k we obtain the asymptotic behavior given by the
lower bound
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Covering Multiple Times

Suppose we want to cover every element of Sn more than
once, i.e., λ ≥ 2 times.

Minimal Order κn,n+k ,λ

What is the order κn,n+k ,λ of a minimal set Aλ ⊆ Sn+k such that
each π′ ∈ Sn is covered λ times by the π ∈ A?
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Covering λ Times

Results from Allison et al., 2013
For k = 1, we have

κn,n+1,λ ≤
(n + 1)!

n2 (log n + (λ− 1) log log n +
λ

(λ− 1)!
(1 + o(1)))

Theorem
Let k ≥ 2. Then

κn,n+k ,λ ≤
(n + k)!

n2k

(
k log n + (λ− 1) log[k log n] +

λ

(λ− 1)!
(1 + o(1))

)
Several results in this log log genre are in G, Grubb, Han and
Kay (2017+).
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Successions

Definition
A succession is a pair of adjacent elements a and b in a
permutation on [n] such that |a− b| = 1.

Example:
In the permutation 1243, 1 and 2 form a succession, and 4 and
3 form a succession.

The permutation 3142 does not contain any successions.
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Other Results on Successions

Lemma
Each (n + 1)-permutation π covers n + 1− sπ n-permutations,
where sπ is the numbers of successions in π.

Lemma
Let n ≥ 5. Let π be a random n-permutation and let j denote
the j th element of π. For each 1 ≤ j ≤ n − 1, let Ij be an
indicator function that equals 1 if (j , j + 1) is a succession and 0

otherwise. Define X =
n−1∑
j=1

Ij . Then for any constant k > 0,

P(X ≥
√

36n log n) ≤ 2
n4 .
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Connections to Turán Theory

The classical Mantel-Turán theorem states that the maximum
number of edges in a graph on n vertices that does not contain
a triangle is bn2/4c, and the extremal graph consists of the
complete bipartite graph Ka,b with a = bn/2c and b = dn/2e.
There are many extensions to graphs that avoid Kr and to
hypergraphs, see, e.g., the LMS survey paper of Keevash
(2011). There is another way to view this result by considering
the complementary graph: The minimum number of edges that
must be absent so that no triangle is complete i.e., contains at
least one missing edge is also roughly n2/4, and the extremal
graph consists of two edge disjoint copies (if n is even) of Kn/2.
If the graph itself consists of two edge disjoint copies of Kn/2,
then every set of three points contains at least one edge of the
graph.
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Turán

It is against this backdrop of Turán type questions that we ask
the main question of this section: What is the smallest number
of n-permutations that must be selected so that each
(n + 1)-permutation contains at least one of the selected
permutations? In this section we find new results on this
upcovering problem of all permutations of length n + 1 with
permutations of length n.
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Theorem
C3,2 = 2,C4,3 = 4 and

(n + 1)!
n2 + 1

≤ Cn+1,n ≤
2(n + 1)!

n4 +
2n! · ln(n + 1)

n + 1− 7
√

n log n
(1 + o(1)).

In other words,

n!
n
(1 + o(1)) ≤ Cn+1,n ≤ 2

n!
n

ln n(1 + o(1)).
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Backwards Covering Theorem: Sketch of Proof

As before, we have that each n-permutation in the covering
set upcovers n2 + 1 (n + 1)-permutations. Thus,
Cn+1,n · (n2 + 1) ≥ (n + 1)!, which gives the lower bound.

Partition Sn+1 into sets B = {π ∈ Sn+1|sπ > 7
√

n log n}
and G = Sn+1 \ B.
Construct an upcovering set for Sn+1 by covering B and G
separately.
For each π ∈ B, add one n-permutation that backwards
covers π to the covering set; there are, by the lemma, at
most 2(n + 1)!/n4 such permutations
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Proof, continued

To upcover G, proceed as before by picking each
n-permutation randomly with some probability p;
Since each such permutation π in G has no more than
7
√

n log n successions, there are at least
n + 1− 7

√
n log n n-permutations that upcover π

Calculate expected number of un-upcovered
(n + 1)-permutations and add one n-permutation to Z for
each un-upcovered permutation.
Minimize over p. In other words, use the method of
alterations.
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Lemmas

Lemma

For any i there exist at most O(n3k ) permutations j that can be
jointly covered with i by some π ∈ Sn+k .

Lemma

For any i , j ∈ Sn, there are O(n2k−2) permutations in Sn+k that
cover both.
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Thresholds via Janson’s Inequality

Theorem
Consider the probability model in which each π ∈ Sn+k is
independently picked with probability p. Let the resulting
random collection of permutations be denoted by A. Then,

lim
n→∞

P(A is a cover of Sn) = 0 if p ≤ log n
n2k−1 (1 + o(1))

and

lim
n→∞

P(A is a cover of Sn) = 1 if p ≥ log n
n2k−1 (1 + o∗(1)).
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