Universal permuton limits of substitution-closed permutation classes

Adeline Pierrot

LRI, Univ. Paris-Sud, Univ. Paris-Saclay

Permutation Patterns 2017

ArXiv: 1706.08333

Joint work with Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin and Mickaël Maazoun

Main issue

 \mathcal{C} a permutation class (i.e $\sigma \in \mathcal{C}$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in \mathcal{C}$)

How do typical large permutations in $\mathcal C$ look like?

Main issue

 \mathcal{C} a permutation class (i.e $\sigma \in \mathcal{C}$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in \mathcal{C}$)

How do typical large permutations in C look like?

Separable permutations of size 204523 and 903073, drawn uniformly at random among those of the same size.

Main issue

 $\mathcal C$ a permutation class (i.e $\sigma \in \mathcal C$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in \mathcal C$)

How do typical large permutations in C look like?

 σ_n a uniform random permutation in $\mathcal C$ of size $n o \infty$

- \rightarrow Limit shape of the diagram of σ_n ?
- \rightarrow Frequency of occurrence of patterns in σ_n ?

Permutations of size 10 000 in Av(231) and Av(321) [Hoffman Rizzolo Slivken PP2015] First order limit shape of Av(231): Same for Av(321).

Permutations of size 10 000 in Av(231) and Av(321) [Hoffman Rizzolo Slivken PP2015] First order limit shape of Av(231): Same for Av(321).

First order limit shape of $Av(132, 213, 231, 312) = \bigcup_{n=1}^{\infty} \{12 \dots n, n \dots 21\}$: with proba 1/2 and N with proba 1/2

Permutations of size 10 000 in Av(231) and Av(321) [Hoffman Rizzolo Slivken PP2015]

First order limit shape of Av(231): Same for Av(321). \rightarrow deterministic limit shape

First order limit shape of $Av(132, 213, 231, 312) = \bigcup_{n=1}^{\infty} \{12 \dots n, n \dots 21\}$:

with proba 1/2 and with proba 1/2

Permutations of size 10 000 in Av(231) and Av(321) [Hoffman Rizzolo Slivken PP2015]

First order limit shape of Av(231): Same for Av(321). \rightarrow deterministic limit shape

First order limit shape of $Av(132, 213, 231, 312) = \bigcup_{n=1}^{\infty} \{12 \dots n, n \dots 21\}$:

igseleft with proba 1/2 and igseleft with proba 1/2

→ non-deterministic limit shape

Pattern densities

Frequency of occurrence of patterns:

$$\widetilde{\mathsf{occ}}(\pi,\sigma) = \frac{\mathsf{number of occurrences of } \pi \mathsf{ in } \sigma}{\binom{n}{k}} \mathsf{ for } n = |\sigma|, k = |\pi|$$

 σ_n a uniform random permutation in $\mathcal C$ of size $n \to \infty$

- asymptotics of $\mathbb{E}[\widetilde{\text{occ}}(\pi, \sigma_n)]$?
- limiting distribution for $\widetilde{\text{occ}}(\pi, \sigma_n)$?
- joint limiting distribution for $\widetilde{\text{occ}}(\pi, \sigma_n)$ for every pattern π ?

Pattern densities

Frequency of occurrence of patterns:

$$\widetilde{\operatorname{occ}}(\pi, \sigma) = \frac{\operatorname{number of occurrences of } \pi \operatorname{ in } \sigma}{\binom{n}{k}} \quad \text{for } n = |\sigma|, k = |\pi|$$

 σ_n a uniform random permutation in $\mathcal C$ of size $n o \infty$

- asymptotics of $\mathbb{E}[\widetilde{\text{occ}}(\pi, \sigma_n)]$?
- limiting distribution for $\widetilde{\text{occ}}(\pi, \sigma_n)$?
- joint limiting distribution for $\widetilde{\text{occ}}(\pi, \sigma_n)$ for every pattern π ?
- → linked with limit shapes thanks to permutons

Permutons

A permuton μ is a probability measure on $[0,1]^2$ such that (x,y) drawn under $\mu \Rightarrow x$ (resp. y) is uniform on [0,1].

Permutation $\sigma \Rightarrow \text{permuton } \mu_{\sigma}$: normalize the diagram and fill in uniformly cells containing dots

- Permuton approximate permutation diagrams
- σ_n random permutation $\Rightarrow \mu_{\sigma_n}$ random permuton

Patterns in permutons

 \bullet σ a permutation

$$\widetilde{\operatorname{occ}}(\pi, \sigma) = \frac{\sharp \operatorname{occurrences} \operatorname{of} \pi \operatorname{in} \sigma}{\binom{n}{k}} = \mathbb{P}\left(\operatorname{pat}_{I}(\sigma) = \pi\right)$$
 with I a uniform random subset of $[n]$ with k elements

• μ a permuton

$$\widetilde{\text{occ}}(\pi, \mu)$$
 = probability that k points drawn from μ are isomorphic to the diagram of π

Random permutons convergence

Theorem:

 (σ_n) random permutations of size n. The following are equivalent:

- ullet $\mu_{oldsymbol{\sigma}_n}$ converges in distribution to some random permuton $oldsymbol{\mu}$
- $(\widetilde{\text{occ}}(\pi, \sigma_n))_{\pi \in \mathfrak{S}}$ converges in distribution to some random infinite vector $(\Lambda_{\pi})_{\pi \in \mathfrak{S}}$.
- $\forall \pi \in \mathfrak{S}$, $\exists \Delta_{\pi} \geq 0$ s.t. $\mathbb{E}[\widetilde{\operatorname{occ}}(\pi, \sigma_n)] \xrightarrow{n \to \infty} \Delta_{\pi}$

Then
$$(\Lambda_{\pi})_{\pi} \stackrel{d}{=} (\widetilde{\mathsf{occ}}(\pi, \mu))_{\pi}$$
 and $\forall \pi \in \mathfrak{S}, \ \Delta_{\pi} = \mathbb{E}[\widetilde{\mathsf{occ}}(\pi, \mu)]$

Random permutons convergence

Theorem:

 (σ_n) random permutations of size n. The following are equivalent:

- μ_{σ_n} converges in distribution to some random permuton μ
- $(\widetilde{\text{occ}}(\pi, \sigma_n))_{\pi \in \mathfrak{S}}$ converges in distribution to some random infinite vector $(\Lambda_{\pi})_{\pi \in \mathfrak{S}}$.
- $\forall \pi \in \mathfrak{S}$, $\exists \Delta_{\pi} \geq 0$ s.t. $\mathbb{E}[\widetilde{\operatorname{occ}}(\pi, \sigma_n)] \xrightarrow{n \to \infty} \Delta_{\pi}$

Then
$$(\Lambda_{\pi})_{\pi} \stackrel{d}{=} (\widetilde{\mathsf{occ}}(\pi, \mu))_{\pi}$$
 and $\forall \pi \in \mathfrak{S}, \ \Delta_{\pi} = \mathbb{E}[\widetilde{\mathsf{occ}}(\pi, \mu)]$

Goal:

Find the permuton limit of (σ_n) uniform random permutations in a substitution-closed class.

Substitution $\sigma[\pi^{(1)}, \dots, \pi^{(n)}]$: Replace each point σ_i by a block $\pi^{(i)}$

Example: 132[21, 132, 1] = 214653.

Substitution $\sigma[\pi^{(1)}, \dots, \pi^{(n)}]$: Replace each point σ_i by a block $\pi^{(i)}$

Example: 132[21, 132, 1] = 214653.

Remark : $\sigma[\pi^{(1)},\dots,\pi^{(n)}] \in \mathcal{C} \ \Rightarrow \ \sigma,\pi^{(1)},\dots,\pi^{(n)} \in \mathcal{C}$

Substitution $\sigma[\pi^{(1)}, \dots, \pi^{(n)}]$: Replace each point σ_i by a block $\pi^{(i)}$

Example: 132[21, 132, 1] = 214653.

Remark :
$$\sigma[\pi^{(1)},\ldots,\pi^{(n)}] \in \mathcal{C} \ \Rightarrow \ \sigma,\pi^{(1)},\ldots,\pi^{(n)} \in \mathcal{C}$$

Substitution-closed class:

$$\sigma, \pi^{(1)}, \dots, \pi^{(n)} \in \mathcal{C} \Rightarrow \sigma[\pi^{(1)}, \dots, \pi^{(n)}] \in \mathcal{C}.$$

Substitution $\sigma[\pi^{(1)}, \dots, \pi^{(n)}]$: Replace each point σ_i by a block $\pi^{(i)}$

Example: 132[21, 132, 1] = 214653.

Remark :
$$\sigma[\pi^{(1)}, \dots, \pi^{(n)}] \in \mathcal{C} \Rightarrow \sigma, \pi^{(1)}, \dots, \pi^{(n)} \in \mathcal{C}$$

Substitution-closed class:

$$\sigma, \pi^{(1)}, \dots, \pi^{(n)} \in \mathcal{C} \Rightarrow \sigma[\pi^{(1)}, \dots, \pi^{(n)}] \in \mathcal{C}.$$

Simple permutation = indecomposable:

$$\alpha$$
 simple \Leftrightarrow cannot be written as $\sigma[\pi^1,\ldots,\pi^n]$ with $1<|\sigma|<|\alpha|$

Permutations ⇔ trees

Every permutation σ of size $n \ge 2$ can be uniquely decomposed as either:

- $\alpha[\pi^{(1)},\ldots,\pi^{(d)}]$ where α is simple of size $d\geq 4$
- $\oplus [\pi^{(1)}, \dots, \pi^{(d)}]$ where $d \geq 2$ and $\pi^{(1)}, \dots, \pi^{(d)}$ are \oplus -indecomposable
- $\ominus[\pi^{(1)}, \dots, \pi^{(d)}]$ where $d \ge 2$ and $\pi^{(1)}, \dots, \pi^{(d)}$ are \ominus -indecomposable

Permutations ⇔ trees

Every permutation σ of size $n \ge 2$ can be uniquely decomposed as either:

- $\alpha[\pi^{(1)}, \dots, \pi^{(d)}]$ where α is simple of size $d \geq 4$
- $\oplus [\pi^{(1)}, \dots, \pi^{(d)}]$ where $d \ge 2$ and $\pi^{(1)}, \dots, \pi^{(d)}$ are \oplus -indecomposable
- $\ominus[\pi^{(1)}, \dots, \pi^{(d)}]$ where $d \ge 2$ and $\pi^{(1)}, \dots, \pi^{(d)}$ are \ominus -indecomposable

Canonical tree: rooted planar tree whose internal nodes have labels s.t.

- Internal nodes are labeled by \oplus , \ominus , or by a simple permutation.
- ullet A node labeled by lpha has degree |lpha|, nodes labeled by \oplus and \ominus have degree at least 2.
- ullet A child of a node labeled by \oplus (resp. \ominus) cannot be labeled by \oplus (resp. \ominus).

Bijection: permutation $\sigma \leftrightarrow$ canonical tree T_{σ} :

$$\sigma = \theta[\pi^{(1)}, \dots, \pi^{(d)}] \Leftrightarrow T_{\sigma} = T_1 \xrightarrow{T_2} T_2 \xrightarrow{\theta} T_d \text{ where } T_i = T_{\pi^{(i)}}$$

Convenient description of substitution-closed classes

 ${\cal S}$ a (finite or infinite) set of simple permutations

$$\langle \mathcal{S} \rangle = \{ \sigma \mid \mathit{T}_{\sigma} \text{ has only nodes } \oplus, \ominus \text{ and } \alpha \in \mathcal{S} \}$$

 \mathcal{S} downward-closed = $\forall \sigma \in \mathcal{S}, \forall$ simple $\pi \preccurlyeq \sigma$, then $\pi \in \mathcal{S}$

Convenient description of substitution-closed classes

 ${\cal S}$ a (finite or infinite) set of simple permutations

$$\langle \mathcal{S} \rangle = \{ \sigma \mid T_{\sigma} \text{ has only nodes } \oplus, \ominus \text{ and } \alpha \in \mathcal{S} \}$$

$$\mathcal{S}$$
 downward-closed = $\forall \sigma \in \mathcal{S}, \forall$ simple $\pi \preccurlyeq \sigma$, then $\pi \in \mathcal{S}$

 $\mathcal C$ substitution-closed class $\Leftrightarrow \mathcal C = \langle \mathcal S \rangle$ for some downward-closed $\mathcal S$

Ex: separable permutations = $\langle \varnothing \rangle$

 $\mathcal S$ not downward-closed $\Rightarrow \langle \mathcal S \rangle$ is not a permutation class, but results of this talk still true for this kind of sets.

Main result: Standard case

 ${\cal S}$ a (finite or infinite) set of simple permutations

$$S(z) = \sum_{lpha \in \mathcal{S}} z^{|lpha|} \quad , \quad R_{\mathcal{S}} \in [0, +\infty] \text{ its radius of convergence}$$

 σ_n a uniform permutation in $\langle \mathcal{S} \rangle_n \ \forall n \geq 1$

Under some condition (H1), $(\mu_{\sigma_n})_n \stackrel{d}{\longrightarrow} \mu^{(p)}$, the biased Brownian separable permuton whose parameter p only depends on the quantity of occurrences of 12 and 21 in the elements of S.

Condition (H1):
$$R_S > 0$$
 and $\lim_{\substack{r \to R_S \\ r < R_S}} S'(r) > \frac{2}{(1 + R_S)^2} - 1$

Why "Standard case"?

- \rightarrow covers many natural cases:
 - $R_S > \sqrt{2} 1$, in particular S finite or s_n grows subexponentially (bounded or polynomial)
 - S' divergent at R_S , in particular, S rational generating function, or S with a square root singularity at R_S .

Why "Standard case"?

- \rightarrow covers many natural cases:
 - $R_S > \sqrt{2} 1$, in particular S finite or s_n grows subexponentially (bounded or polynomial)
 - S' divergent at R_S , in particular, S rational generating function, or S with a square root singularity at R_S .

 \rightarrow all sets $\mathcal S$ studied in the literature enters the standard case!

The biased Brownian separable permuton

Simulations of $\mu^{(p)}$ for p=0.2, p=0.45 and p=0.5

 $\mu^{(p)}$ characterized by $\mathbb{E}[\widetilde{\operatorname{occ}}(\pi,\mu^{(p)})] = \frac{N_{\pi}}{\operatorname{Cat}_{k-1}} \ p^{r_+(\pi)} (1-p)^{r_-(\pi)} \ \forall k \geq 2 \ \text{and} \ \forall \pi \in \mathfrak{S}_k$ with $N_{\pi} = \sharp$ separation trees of π (= 0 if π non-separable!) and $r_+(\pi)$ (resp. $r_-(\pi)$) = \sharp nodes labeled \oplus (resp. \ominus) in such a tree.

The biased Brownian separable permuton

Simulations of $\mu^{(p)}$ for p=0.2, p=0.45 and p=0.5

 $\mu^{(p)}$ characterized by $\mathbb{E}[\widetilde{\operatorname{occ}}(\pi,\mu^{(p)})] = \frac{N_{\pi}}{\operatorname{Cat}_{k-1}} \ p^{r_+(\pi)} (1-p)^{r_-(\pi)} \ \forall k \geq 2 \ \text{and} \ \forall \pi \in \mathfrak{S}_k$ with $N_{\pi} = \sharp$ separation trees of π (= 0 if π non-separable!) and $r_+(\pi)$ (resp. $r_-(\pi)$) = \sharp nodes labeled \oplus (resp. \ominus) in such a tree.

 $\mu^{(p)}$ can be directly build from the signed Brownian excursion

Degenerate case

Case
$$S'(R_S) < 2/(1 + R_S)^2 - 1$$
, with a condition (CS)

If uniform simple permutations in $\mathcal S$ have a permuton limit then the limit of uniform permutations in $\langle \mathcal S \rangle$ is the same.

 \rightarrow Degenerate case

Critical case

Case
$$S'(R_S) = 2/(1 + R_S)^2 - 1$$
, with condition (CS)

According to the behavior of S near R_S , the permuton limit of σ_n is

- either a biased Brownian separable permuton
- or a stable permuton, defined using the random stable tree

Simulations of a 1.1-stable and 1.5-stable permuton

• We give the permutons limits of large families of substitution-closed classes C.

- We give the permutons limits of large families of substitution-closed classes C.
- In the standard case, the limit is a biased Brownian separable permuton whose parameter p only depends on the quantity of occurrences of 12 and 21 in simple permutations of C.

- We give the permutons limits of large families of substitution-closed classes C.
- In the standard case, the limit is a biased Brownian separable permuton whose parameter p only depends on the quantity of occurrences of 12 and 21 in simple permutations of C.
- In the degenerate case, the limit is the same as the one of simple permutations of C.

- We give the permutons limits of large families of substitution-closed classes C.
- In the standard case, the limit is a biased Brownian separable permuton whose parameter p only depends on the quantity of occurrences of 12 and 21 in simple permutations of C.
- In the degenerate case, the limit is the same as the one of simple permutations of \mathcal{C} .
- In the critical case, the limit is either biased Brownian separable permuton, or a stable permuton.

- We give the permutons limits of large families of substitution-closed classes C.
- In the standard case, the limit is a biased Brownian separable permuton whose parameter p only depends on the quantity of occurrences of 12 and 21 in simple permutations of C.
- In the degenerate case, the limit is the same as the one of simple permutations of \mathcal{C} .
- In the critical case, the limit is either biased Brownian separable permuton, or a stable permuton.
- Results also true for sets of permutations that are not permutation classes, but can be described with labels of canonical trees.

- We give the permutons limits of large families of substitution-closed classes C.
- In the standard case, the limit is a biased Brownian separable permuton whose parameter p only depends on the quantity of occurrences of 12 and 21 in simple permutations of C.
- In the degenerate case, the limit is the same as the one of simple permutations of \mathcal{C} .
- In the critical case, the limit is either biased Brownian separable permuton, or a stable permuton.
- Results also true for sets of permutations that are not permutation classes, but can be described with labels of canonical trees.
- Are there substitution-closed classes that do enters the standard case?

- We give the permutons limits of large families of substitution-closed classes C.
- In the standard case, the limit is a biased Brownian separable permuton whose parameter p only depends on the quantity of occurrences of 12 and 21 in simple permutations of C.
- In the degenerate case, the limit is the same as the one of simple permutations of C.
- In the critical case, the limit is either biased Brownian separable permuton, or a stable permuton.
- Results also true for sets of permutations that are not permutation classes, but can be described with labels of canonical trees.
- Are there substitution-closed classes that do enters the standard case?

Thank you!