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C a permutation class (i.e σ ∈ C and π 4 σ ⇒ π ∈ C)

How do typical large permutations in C look like?
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Main issue

C a permutation class (i.e σ ∈ C and π 4 σ ⇒ π ∈ C)

How do typical large permutations in C look like?

σn a uniform random permutation in C of size n→∞

→ Limit shape of the diagram of σn?

→ Frequency of occurrence of patterns in σn?



Limit shape of permutation diagrams

Permutations of size 10 000 in Av(231) and Av(321) [Hoffman Rizzolo Slivken PP2015]

First order limit shape of Av(231): Same for Av(321).

→ deterministic limit shape

First order limit shape of Av(132, 213, 231, 312) = ∪∞n=1{12 . . . n, n . . . 21}:

with proba 1/2 and with proba 1/2

→ non-deterministic limit shape
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Pattern densities

Frequency of occurrence of patterns:

õcc(π, σ) =
number of occurrences of π in σ(n

k

) for n = |σ|, k = |π|

σn a uniform random permutation in C of size n→∞
• asymptotics of E[õcc(π,σn)]?

• limiting distribution for õcc(π,σn)?

• joint limiting distribution for õcc(π,σn) for every pattern π?

→ linked with limit shapes thanks to permutons
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Permutons

A permuton µ is a probability measure on [0, 1]2 such that
(x , y) drawn under µ ⇒ x (resp. y) is uniform on [0, 1].

Permutation σ ⇒ permuton µσ:
normalize the diagram and fill in uniformly cells containing dots

→

• Permuton approximate permutation diagrams

• σn random permutation ⇒ µσn random permuton



Patterns in permutons

• σ a permutation

õcc(π, σ) =
] occurrences of π in σ(n

k

) = P (patI (σ) = π)

with I a uniform random subset of [n] with k elements

• µ a permuton

õcc(π, µ) = probability that k points drawn from µ
are isomorphic to the diagram of π



Random permutons convergence

Theorem:
(σn) random permutations of size n. The following are equivalent:

• µσn converges in distribution to some random permuton µ

•
(

õcc(π,σn)
)
π∈S converges in distribution to some random

infinite vector (Λπ)π∈S.

• ∀π ∈ S, ∃∆π ≥ 0 s.t. E[õcc(π,σn)]
n→∞−−−→ ∆π

Then (Λπ)π
d
= (õcc(π,µ))π and ∀π ∈ S, ∆π = E[õcc(π,µ)]

Goal:
Find the permuton limit of (σn) uniform random permutations in a
substitution-closed class.
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Substitution

Substitution σ[π(1), . . . , π(n)] : Replace each point σi by a block π(i)

Example : 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.

Remark : σ[π(1), . . . , π(n)] ∈ C ⇒ σ, π(1), . . . , π(n) ∈ C

Substitution-closed class:
σ, π(1), . . . , π(n) ∈ C ⇒ σ[π(1), . . . , π(n)] ∈ C.

Simple permutation = indecomposable:
α simple ⇔ cannot be written as σ[π1, . . . , πn] with 1 < |σ| < |α|
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Permutations ⇔ trees

Every permutation σ of size n ≥ 2 can be uniquely decomposed as either:
• α[π(1), . . . , π(d)] where α is simple of size d ≥ 4
• ⊕[π(1), . . . , π(d)] where d ≥ 2 and π(1), . . . , π(d) are ⊕-indecomposable
• 	[π(1), . . . , π(d)] where d ≥ 2 and π(1), . . . , π(d) are 	-indecomposable

Canonical tree: rooted planar tree whose internal nodes have labels s.t.
• Internal nodes are labeled by ⊕,	, or by a simple permutation.
• A node labeled by α has degree |α|, nodes labeled by ⊕ and 	 have
degree at least 2.
• A child of a node labeled by ⊕ (resp.	) cannot be labeled by ⊕ (resp.	).

Bijection: permutation σ ↔ canonical tree Tσ:

σ = θ[π(1), . . . , π(d)] ⇔ Tσ = θ

T1 T2
. . . Td

where Ti = Tπ(i)
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Convenient description of substitution-closed classes

S a (finite or infinite) set of simple permutations

〈S〉 = {σ | Tσ has only nodes ⊕,	 and α ∈ S}

S downward-closed = ∀σ ∈ S, ∀ simple π 4 σ, then π ∈ S

C substitution-closed class ⇔ C = 〈S〉 for some downward-closed S

Ex: separable permutations = 〈∅〉

S not downward-closed ⇒ 〈S〉 is not a permutation class,
but results of this talk still true for this kind of sets.
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Main result: Standard case

S a (finite or infinite) set of simple permutations

S(z) =
∑
α∈S

z |α| , RS ∈ [0,+∞] its radius of convergence

σn a uniform permutation in 〈S〉n ∀n ≥ 1

Under some condition (H1), (µσn)n
d−→ µ(p), the biased Brownian

separable permuton whose parameter p only depends on the
quantity of occurrences of 12 and 21 in the elements of S.

Condition (H1): RS > 0 and lim
r→RS
r<RS

S ′(r) >
2

(1 + RS)2
− 1



Why ”Standard case”?

→ covers many natural cases:

• RS >
√

2− 1, in particular S finite or sn grows
subexponentially (bounded or polynomial)

• S ′ divergent at RS , in particular, S rational generating
function, or S with a square root singularity at RS .

→ all sets S studied in the literature enters the standard case!
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The biased Brownian separable permuton

Simulations of µ(p) for p = 0.2, p = 0.45 and p = 0.5

µ(p) characterized by

E[õcc(π,µ(p))] = Nπ
Catk−1

pr+(π) (1− p)r−(π) ∀k ≥ 2 and ∀π ∈ Sk

with Nπ = ] separation trees of π (= 0 if π non-separable!) and

r+(π) (resp. r−(π)) = ] nodes labeled ⊕ (resp.	) in such a tree.

µ(p) can be directly build from the signed Brownian excursion
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Degenerate case

Case S ′(RS) < 2/(1 + RS)2 − 1, with a condition (CS)

If uniform simple permutations in S have a permuton limit

then the limit of uniform permutations in 〈S〉 is the same.

→ Degenerate case



Critical case

Case S ′(RS) = 2/(1 + RS)2 − 1, with condition (CS)

According to the behavior of S near RS , the permuton limit of σn is

• either a biased Brownian separable permuton

• or a stable permuton, defined using the random stable tree

Simulations of a 1.1-stable and 1.5-stable permuton



Conclusion and Perspectives

• We give the permutons limits of large families of
substitution-closed classes C.

• In the standard case, the limit is a biased Brownian separable
permuton whose parameter p only depends on the quantity of
occurrences of 12 and 21 in simple permutations of C.

• In the degenerate case, the limit is the same as the one of
simple permutations of C.

• In the critical case, the limit is either biased Brownian separable
permuton, or a stable permuton.

• Results also true for sets of permutations that are not
permutation classes, but can be described with labels of
canonical trees.

• Are there substitution-closed classes that do enters the
standard case?



Conclusion and Perspectives

• We give the permutons limits of large families of
substitution-closed classes C.

• In the standard case, the limit is a biased Brownian separable
permuton whose parameter p only depends on the quantity of
occurrences of 12 and 21 in simple permutations of C.

• In the degenerate case, the limit is the same as the one of
simple permutations of C.

• In the critical case, the limit is either biased Brownian separable
permuton, or a stable permuton.

• Results also true for sets of permutations that are not
permutation classes, but can be described with labels of
canonical trees.

• Are there substitution-closed classes that do enters the
standard case?



Conclusion and Perspectives

• We give the permutons limits of large families of
substitution-closed classes C.

• In the standard case, the limit is a biased Brownian separable
permuton whose parameter p only depends on the quantity of
occurrences of 12 and 21 in simple permutations of C.

• In the degenerate case, the limit is the same as the one of
simple permutations of C.

• In the critical case, the limit is either biased Brownian separable
permuton, or a stable permuton.

• Results also true for sets of permutations that are not
permutation classes, but can be described with labels of
canonical trees.

• Are there substitution-closed classes that do enters the
standard case?



Conclusion and Perspectives

• We give the permutons limits of large families of
substitution-closed classes C.

• In the standard case, the limit is a biased Brownian separable
permuton whose parameter p only depends on the quantity of
occurrences of 12 and 21 in simple permutations of C.

• In the degenerate case, the limit is the same as the one of
simple permutations of C.

• In the critical case, the limit is either biased Brownian separable
permuton, or a stable permuton.

• Results also true for sets of permutations that are not
permutation classes, but can be described with labels of
canonical trees.

• Are there substitution-closed classes that do enters the
standard case?



Conclusion and Perspectives

• We give the permutons limits of large families of
substitution-closed classes C.

• In the standard case, the limit is a biased Brownian separable
permuton whose parameter p only depends on the quantity of
occurrences of 12 and 21 in simple permutations of C.

• In the degenerate case, the limit is the same as the one of
simple permutations of C.

• In the critical case, the limit is either biased Brownian separable
permuton, or a stable permuton.

• Results also true for sets of permutations that are not
permutation classes, but can be described with labels of
canonical trees.

• Are there substitution-closed classes that do enters the
standard case?



Conclusion and Perspectives

• We give the permutons limits of large families of
substitution-closed classes C.

• In the standard case, the limit is a biased Brownian separable
permuton whose parameter p only depends on the quantity of
occurrences of 12 and 21 in simple permutations of C.

• In the degenerate case, the limit is the same as the one of
simple permutations of C.

• In the critical case, the limit is either biased Brownian separable
permuton, or a stable permuton.

• Results also true for sets of permutations that are not
permutation classes, but can be described with labels of
canonical trees.

• Are there substitution-closed classes that do enters the
standard case?



Conclusion and Perspectives

• We give the permutons limits of large families of
substitution-closed classes C.

• In the standard case, the limit is a biased Brownian separable
permuton whose parameter p only depends on the quantity of
occurrences of 12 and 21 in simple permutations of C.

• In the degenerate case, the limit is the same as the one of
simple permutations of C.

• In the critical case, the limit is either biased Brownian separable
permuton, or a stable permuton.

• Results also true for sets of permutations that are not
permutation classes, but can be described with labels of
canonical trees.

• Are there substitution-closed classes that do enters the
standard case?

Thank you!


