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Separable permutations of size 204523 and 903073,
drawn uniformly at random among those of the same size.



Main issue

C a permutation class (ieoc € Cand 7 g0 = m € ()

How do typical large permutations in C look like?

o, a uniform random permutation in C of size n — oo
— Limit shape of the diagram of o7

— Frequency of occurrence of patterns in o7
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Permutations of size 10000 in Av(231) and Av(321) [Hoffman Rizzolo Slivken PP2015]

First order limit shape of Av(231): Z Same for Av(321).
— deterministic limit shape

First order limit shape of Av(132,213,231,312) = U®,{12...n,n...21}:

Z with proba 1/2 and E with proba 1/2
— non-deterministic limit shape



Pattern densities

Frequency of occurrence of patterns:
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— linked with limit shapes thanks to permutons



Permutons

A permuton y is a probability measure on [0,1]? such that
(x,y) drawn under ;= x (resp. y) is uniform on [0, 1].

Permutation ¢ = permuton p,:
normalize the diagram and fill in uniformly cells containing dots

_>

e Permuton approximate permutation diagrams

e 0, random permutation = y, random permuton



Patterns in permutons

e 0 a permutation

. fri
Sec(r, o) = o occurrenc::s of mino _ P (pat,(c) = )

k
with I a uniform random subset of [n] with k elements

® /1 a permuton

occ(m, u) = probability that k points drawn from g
are isomorphic to the diagram of 7



Random permutons convergence

Theorem:
(on) random permutations of size n. The following are equivalent:

® (i, converges in distribution to some random permuton u

o (occ(m, o)), . converges in distribution to some random

infinite vector (Ay)rea-
n—oo

o Vr e, IA: > 0s.t. E[oce(m,o,)] —— Ax
Then (Ax)r < (6Sc(m, 1)) and V7 € &, A, = E[occ(r, p)]



Random permutons convergence

Theorem:
(on) random permutations of size n. The following are equivalent:
® (i, converges in distribution to some random permuton u

o (occ(m, o)), . converges in distribution to some random

infinite vector (Ay)rea-
n—oo

o Vr e, IA: > 0s.t. E[oce(m,o,)] —— Ax
Then (Ax)r < (6Sc(m, 1)) and V7 € &, A, = E[occ(r, p)]

Goal:

Find the permuton limit of (o) uniform random permutations in a
substitution-closed class.
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Substitution

Substitution o[7(), ... 7("]: Replace each point o; by a block (")

Example : 132[21,132,1] = 214653,
Remark : o[z, ... . 7(MeC = o,7M,. .. z(0 e

Substitution-closed class:
o@D . oxMec = a[ﬂ'(l), . ,7'('(”)] eC.

Simple permutation = indecomposable:
« simple < cannot be written as o[r!, ..., 7" with 1 < |o| < ||



Permutations < trees

Every permutation o of size n > 2 can be uniquely decomposed as either:
o o[t ... 7()] where a is simple of size d > 4

e o[rW ... 7] where d > 2 and (V). .. 7(?) are @-indecomposable
e o[rM ... 7] where d > 2 and 7). .. 7(9) are S-indecomposable



Permutations < trees

Every permutation o of size n > 2 can be uniquely decomposed as either:

o o[t ... 7()] where a is simple of size d > 4
e o[rW ... 7] where d > 2 and (V). .. 7(?) are @-indecomposable
e o[rM ... 7] where d > 2 and 7). .. 7(9) are S-indecomposable

Canonical tree: rooted planar tree whose internal nodes have labels s.t.

o Internal nodes are labeled by ®, ©, or by a simple permutation.

e A node labeled by « has degree |a, nodes labeled by @ and © have
degree at least 2.

o A child of a node labeled by @& (resp.©) cannot be labeled by & (resp.©).

Bijection: permutation ¢ <+ canonical tree T,:

oc=0[xW,. . 29 & T, = /T.e\\ where T; = T

T T Ty



Convenient description of substitution-closed classes

S a (finite or infinite) set of simple permutations
(S§) ={o | T, has only nodes ®,5 and o € S}

S downward-closed = Vo € S,V simple 7 < o, then 1 € §



Convenient description of substitution-closed classes

S a (finite or infinite) set of simple permutations

(S§) ={o | T, has only nodes ®,5 and o € S}

S downward-closed = Vo € S,V simple 7 < o, then 1 € §

C substitution-closed class < C = (S) for some downward-closed S
Ex: separable permutations = (&)

S not downward-closed = (S) is not a permutation class,
but results of this talk still true for this kind of sets.



Main result: Standard case

S a (finite or infinite) set of simple permutations

S(z) = Z Z°l | Rs €0, +00] its radius of convergence
a€eS

o, a uniform permutation in (S), Vn>1

Under some condition (H1), (o, )n LN 11(P), the biased Brownian
separable permuton whose parameter p only depends on the
quantity of occurrences of 12 and 21 in the elements of S.

2
Condition (H1): Rs >0 and rl—ims S'(r) > (1+Rs)2

r<Rg

1



Why " Standard case”?

— covers many natural cases:

e Rs > /2 —1, in particular S finite or s, grows
subexponentially (bounded or polynomial)

e S’ divergent at Rs, in particular, S rational generating
function, or S with a square root singularity at Rs.



Why " Standard case”?

— covers many natural cases:

e Rs > /2 —1, in particular S finite or s, grows
subexponentially (bounded or polynomial)

e S’ divergent at Rs, in particular, S rational generating
function, or S with a square root singularity at Rs.

— all sets S studied in the literature enters the standard case!



The biased Brownian separable permuton
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Simulations of u(P) for p=0.2, p=0.45and p=0.5

1(P) characterized by
Efoce(r, pP)] = Zo— pr(™) (1 — p)~ (") Vk > 2 and Vr € &,
with N, = § separation trees of 7 (= 0 if = non-separable!) and

ry(m) (resp.r—(m)) = # nodes labeled & (resp. &) in such a tree.



The biased Brownian separable permuton
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Simulations of u(P) for p=0.2, p=0.45and p=0.5

1(P) characterized by
Efoce(r, pP)] = Zo— pr(™) (1 — p)~ (") Vk > 2 and Vr € &,
with N, = § separation trees of 7 (= 0 if = non-separable!) and

ry(m) (resp.r—(m)) = # nodes labeled & (resp. &) in such a tree.

/,L(”) can be directly build from the signed Brownian excursion



Degenerate case

Case S'(Rs) < 2/(1 + Rs)? — 1, with a condition (CS)

If uniform simple permutations in S have a permuton limit

then the limit of uniform permutations in (S) is the same.

— Degenerate case



Critical case

Case S'(Rs) = 2/(1 + Rs)? — 1, with condition (CS)

According to the behavior of S near Rs, the permuton limit of o, is
e either a biased Brownian separable permuton

e or a stable permuton, defined using the random stable tree

Simulations of a 1.1-stable and 1.5-stable permuton
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Conclusion and Perspectives

We give the permutons limits of large families of
substitution-closed classes C.

In the standard case, the limit is a biased Brownian separable
permuton whose parameter p only depends on the quantity of
occurrences of 12 and 21 in simple permutations of C.

In the degenerate case, the limit is the same as the one of
simple permutations of C.

In the critical case, the limit is either biased Brownian separable
permuton, or a stable permuton.

Results also true for sets of permutations that are not
permutation classes, but can be described with labels of
canonical trees.

Are there substitution-closed classes that do enters the

standard case?
Thank you!



