Open Problem: Can we count the equivalence classes under the {132, 231}{213, 312} pattern-replacement equivalence?

> William Kuszmaul Stanford University

> > June 29, 2017

PATTERN REPLACEMENT: A SIMPLE EXAMPLE Pattern-replacement set: {*abc*, *bca*}

- ▶ a < b < c</p>
- Letters in a permutation must be consecutive to form a pattern.

$$2\underline{134}_{abc} - 2\underline{341}_{bca}$$

PATTERN REPLACEMENT: A SIMPLE EXAMPLE Pattern-replacement set: {*abc*, *bca*}

- ▶ a < b < c</p>
- Letters in a permutation must be consecutive to form a pattern.

LOOKING AT A GRAPH

Pattern-replacement set: $\{abc, acb, bca\}$ Graph of all permutations of size 4 (S_4):

LOOKING AT A GRAPH

Pattern-replacement set: $\{abc, acb, bca\}$ Graph of all permutations of size 4 (S_4):

TWO SETS OF TWO PATTERNS ARE HISTORICALLY PARTICULARLY INTERESTING

► Donald Knuth: {*bac*, *bca*}{*acb*, *cab*}-equivalence, the Knuth relation

► Number of classes in S_n : $f(n) = f(n-1) + (n-1) \cdot f(n-2)$

► Novelli and Schilling: {*bac*, *acb*}{*bca*, *cab*}-equivalence, the forgotten relation

• Number of classes in S_n : $n^2 - 3n + 4$

D. Knuth, *Permutations, Matrices and Generalized Young tableaux*, Pacific J. Math. Volume 34, Number 3 (1970), 709-727.

J.-C. Novelli, A. Schilling, *The Forgotten Monoid*, RIMS Kokyuroku Bessatsu B8 (2008), 71-83.

CONSIDERING ALL PAIRS OF SETS OF TWO PATTERNS

Goal: For each choice of distinct $x, y, z, w \in S_3$, how many classes are there in S_n under $\{x, y\}\{z, w\}$ -equivalence?

What's Known: All but one case solved in my paper *Counting Permutations Modulo Pattern-Replacement Equivalences for Three-Letter Patterns* (2014).

Open Question: How many equivalence classes are there in S_n under the {*bac*, *cab*}{*acb*, *bca*}-equivalence?

Computational Data:

n	3	4	5	6	7	8	9	10	11	12
# classes	4	10	26	76	234	782	2804	10972	47246	224648