ON SUPER-STRONG WILF EQUIVALENCE CLASSES OF PERMUTATIONS

Demetris Hadjiloucas - <u>Ioannis Michos</u> - Christina Savvidou

d.hadjiloucas@euc.ac.cy - i.michos@euc.ac.cy - csavvidou@uclan.ac.uk

European University Cyprus Laureate international universities

Permutation Patterns, 26-30 June 2017, Reykjavik University

MOTIVATION

Is the number of elements of the symmetric group S_n on n letters that are Wilf equivalent to a given permutation always a power of 2?

INTRODUCTION

Let \mathbb{P} be the set of positive integers. For a word $w \in \mathbb{P}^*$, let |w| be its length and ||w|| be its height, i.e. the sum of its letters. The *weight* of w is the monomial $t^{|w|}x^{||w||}$. Suppose $u, w \in \mathbb{P}^*$. An embedding of u in w is a factor v of w such that |v| = |u| = k and $u_i \leq v_i$ for all $i \in [k]$. If the first element of v is the j-th element of w then the index j is called an *embedding index* of u into w. The *embedding set* Em(u, w) is the set of all embedding indices of u into w.

TREE REPRESENTATION

We denote by $T^n(u)$ the ordered rooted tree whose leaves constitute the cross equivalence class of u. The nodes of $T^n(u)$ are defined to be the partly filled words

 $S_i^n = \{x \in A^n : |x|_j = 1 \text{ for } 1 \le j \le i \text{ and } |x|_* = n - i\},\$

where $A = [n] \cup \{*\}, i \in [0, n]$, and $|x|_a$ is the number of occurrences of the letter a in the word x. The elements at the *i*-th level of $T^n(u)$ constitute the set

 $L_i^n(u) = \{ x \in S_i^n : d_x(i, *) = i^+(u) \}.$

EXAMPLE

Let u = 21365874. Then $s = u^{-1} = 21385476$. The sequence of differences for *s* is the following:

> $\Delta_7(s) = (1)$ $\Delta_6(s) = (2,1)$ $\Delta_5(s) = (1,1,1)$ $\Delta_4(s) = (1,1,1,1)$ $\Delta_3(s) = (1,1,1,1,1)$ $\Delta_2(s) = (2,1,1,1,1,1)$

The multisets of distances for the word u are:

- Wilf equivalence u ~ v ⇔ they have the same weight-generating function.
- Strong Wilf equivalence $u \sim_s v \Leftrightarrow \exists$ a weightpreserving bijection $f : \mathbb{P}^* \to \mathbb{P}^*$ s.t. $|Em(u,w)| = |Em(v, f(w))|, \forall w \in \mathbb{P}^*.$
- Super-strong Wilf equivalence $u \sim_{ss} v \Leftrightarrow \exists$ a weight-preserving bijection $f : \mathbb{P}^* \to \mathbb{P}^*$ s.t. $Em(u, w) = Em(v, f(w)), \forall w \in \mathbb{P}^*.$

CLUSTER METHOD

Given a word $u \in \mathbb{P}^*$ and a set E, the *minimal* cluster m(u, E) of u with embedding set E is the unique word w s.t. Em(u, w) = E and none of the entries of w can be decreased without altering the set of its factors.

The word $y \in S_{i+1}^n$ is a child of the word $x \in S_i^n$ if they have exactly n - 1 letters in common.

Proposition. $T^n(u)$ is a binary tree, where at each level the number of children is the same throughout all nodes and is either equal to 1 or 2.

For a word $x \in S_i^n$, let f(x) be the factor of xwhose first and last letter is respectively the first and last * that appear in x. Let c(x) be the configuration word in letters $\{*, \circ\}$ that we obtain if we replace all numbers in f(x) with \circ .

A vertex $x \in T^n(u)$ that has two children yand y' is labeled 0 if c(y) = c(y'), and 1 otherwise.

Theorem. Let $u, v \in S_n$. Suppose that $u \sim_+ v$. Then $u \sim_{ss} v$ if and only if one can get from u to v in $T_n(u)$ by following a path that avoids switching direction (from left to right or vice-versa) on vertices at the same level which are labeled 1.

Corollary. Let $u \in S_n$ and let k, l be the number of levels in $T^n(u)$ labeled 0 and 1, respectively. • The number of words in each super-strong Wilf equivalence class in $T^n(u)$ is equal to 2^k . • The class $[u]_+$ is particular into 2^l distinct super-strong Wilf equivalence classes. $7^{+}(u) = \{1\}, \qquad 6^{+}(u) = \{2,3\},$ $5^{+}(u) = \{1,1,2\}, \qquad 4^{+}(u) = \{1,2,3,4\},$ $3^{+}(u) = \{1,2,3,4,5\}, \qquad 2^{+}(u) = \{2,3,4,5,6,7\},$ $1^{+}(u) = \{1,1,2,3,4,5,6\}$

The binary tree $T^{8}(u)$ is shown below. The cross equivalence class of u, that is represented by the leaves of $T^{8}(u)$, is partitioned in the following four super-strong Wilf equivalence classes, where v = 21347856 and \tilde{u} and \tilde{v} denote the reversals of u and v respectively.

	Class
u	$21346578, 21346587, 21365784, \underline{21365874},$
	21465783, 21465873, 21657843, 21658743
v	$\underline{21347856}, 21348756, 21378564, 21387564,$
	21478563, 21487563, 21785643, 21875643
\tilde{u}	34785612, 34875612, 37856412, 38756412,
	$\underline{47856312}, 48756312, 78564312, 87564312$
\tilde{v}	34657812, 34658712, 36578412, 36587412,
	$46578312, 46587312, 65784312, \underline{65874312}$

Minimal Cluster Rearrangement Theorem (MCRT): Let $u, v \in \mathbb{P}^*$. Then $u \sim_{ss} v \iff$ m(u, E) and m(v, E) are rearrangements of one another, for every embedding set E.

Intersection Rule: Let $u, v \in S_n$ and $s = u^{-1}, t = v^{-1}$. Then

$$\left| u \sim_{ss} v \iff \left| \overline{s_i} \cap \left(\bigcup_{j=i+1}^n \overline{s_j} \right) \right| = \left| \overline{t_i} \cap \left(\bigcup_{j=i+1}^n \overline{t_j} \right) \right|$$

for each $i \in [n - 1]$ and every embedding set E, where \overline{k} is the shift of E by k - 1 positions to the right.

SEQUENCE OF DIFFERENCES

Let $u, v \in S_n$. We say that u is *cross equivalent* to v, i.e. $u \sim_+ v$, if $i^+(u) = i^+(v)$, $\forall i \in [n-1]$, where $i^+(u)$ is defined as the multiset of distances

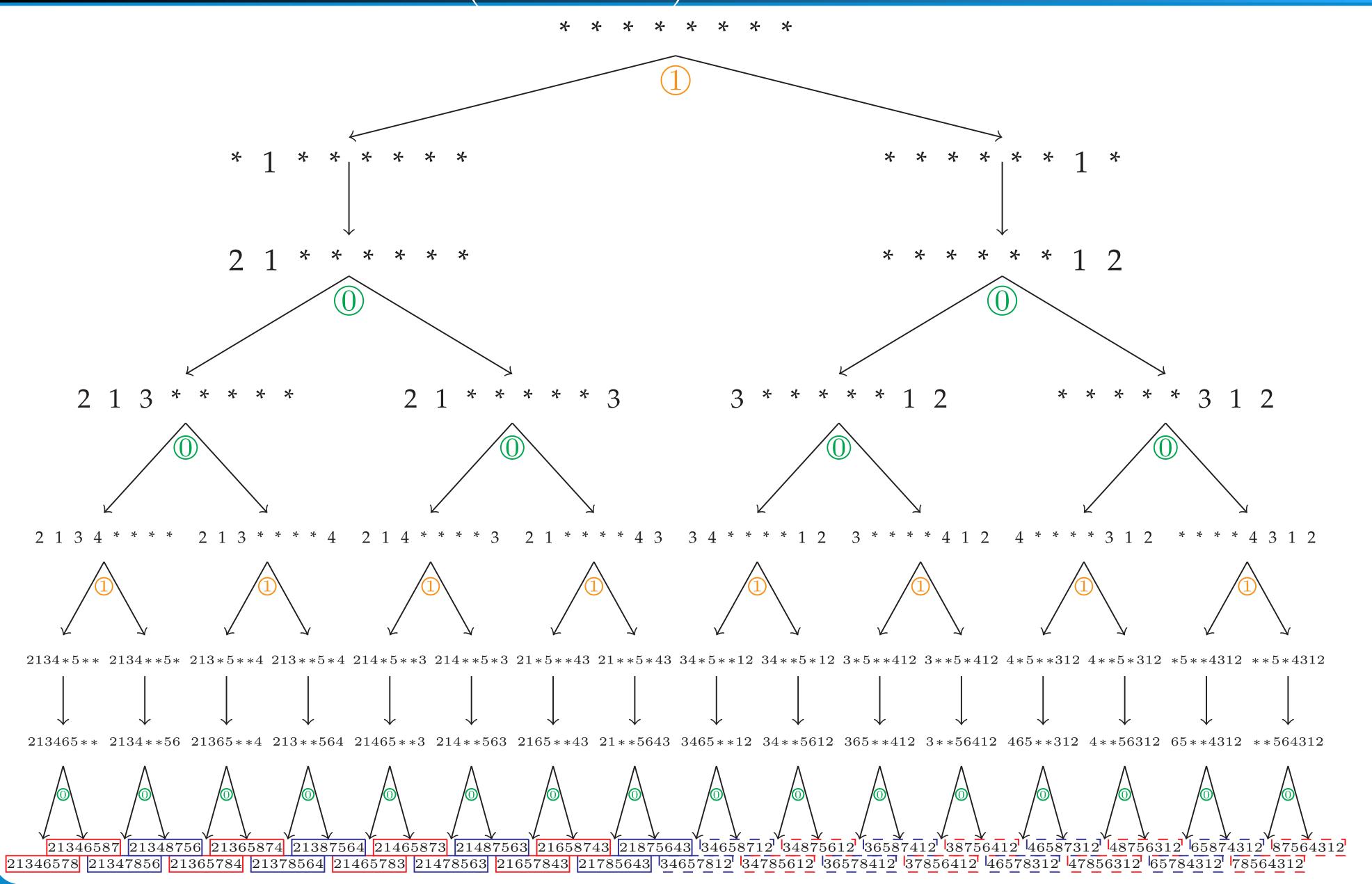
 $i^{+}(u) = \{ d_{u}(i,j) : j \in [i+1,n] \}.$

We have shown that super-strong Wilf equiva-

OPEN PROBLEMS

Investigate further connections amongst Wilf, cross, shift and super-strong Wilf equivalence.
Enumerate all cross equivalence and super-strong Wilf equivalence classes for a given n ∈ N.

The binary tree $T^{8}(21365874)$



lence is a strict refinement of cross equivalence. Given a permutation u, its inverse $s = u^{-1}$ and a letter i, the vector of consecutive differences $\Delta_i(s)$ for $i \in [2, n - 1]$, contains the distances between letters in u that are greater than or equal to ias they appear sequentially in u from left to right.

Theorem. Let
$$u, v \in S_n$$
, $s = u^{-1}$ and $t = v^{-1}$. Then
 $u \sim_{ss} v \iff \Delta_i(s) = \Delta_i(t), \forall i \in [2, n - 1].$

REFERENCES

- 1. D. Hadjiloucas, I. Michos, and C. Savvidou, On super-strong Wilf equivalence classes of permutations, Preprint, arxiv.org/abs/1611.04014, 2016.
- 2. S. Kitaev, J. Liese, J. Remmel, B. E. Sagan, Rationality, irrationality and Wilf equivalence in generalized factor order, The Electronic Journal of Combinatorics 16(2), 2009.
- 3. J. Pantone, V. Vatter, On the Rearrangement Conjecture for generalized factor order over P, in 26th International Conference on FPSAC 2014. DMTCS Proc., AT. Assoc. DMTCS, Nancy, 2014, pp. 217–228.