

Horseshoe Shuffles and Elmsley's Problem

Definition 1. To perform a horseshoe shuffle on a deck with 2n cards:

- 1. split the deck perfectly in half,
- 2. reverse the order of the cards in the second half, and 3. interlace perfectly the two halves.

Out horseshoe shuffle: top card stays on top

In horseshoe shuffle: top card does not stay on top

Elmsley's problem. Find all minimal sequences of horseshoe shuffles that move a given card to the top of the deck.

Deck of size 2^r

Theorem 1 (Butler–Diaconis–Graham [1]). Every card in a deck of 2^r cards has a unique Elmsley sequence.

If we encode the positions as binary words $x_{r-1} \cdots x_0$, then we have

out shuffle :
$$x_{r-1}x_{r-2}...x_1x_0 \longrightarrow \begin{cases} x_{r-2}...x_1x_00 & \text{if} \\ \overline{x_{r-2}\cdots x_1x_0}1 & \text{i} \end{cases}$$

$$in \text{ shuffle}: x_{r-1}x_{r-2}...x_1x_0 \longrightarrow \begin{cases} x_{r-2}...x_1x_0 & \text{if } x_{r-2}...x_1x_0 \\ \overline{x_{r-2}...x_1x_0} & \text{if } x_{r-2}...x_1x_0 \\ \hline x_{r-2}...x_1x_0 & \text{if } x_{r-2}...x_1x_0 \\ \hline x_{r-2}...x_1x_1x_0 & \text{if } x_{r-2}...x_1x_0 \\ \hline x_{r-2}...x_1x_1x_0 &$$

Algorithm 1. This leads to an algorithm to compute the unique Elmsley sequence for every card.

			$1 0 0 1 \neg$	
	$x \rightarrow 0$	r - 1	$1 1 0 y_1 \stackrel{\smile}{\lnot} $	0
	$x_{r-1} = 0$	$x_{r-1} - 1$	$0 1 \overline{y_1} y_2 \mathrel{\leftarrow}^{out}$	1
$x'_0 = 0$	out	in	$1 \frac{\overline{\eta_1}}{\overline{\eta_2}} \frac{\overline{\eta_2}}{\eta_2} \stackrel{in}{\prec}$	Ο
$x'_0 = 1$	in	out	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0

Figure 1: The table indicates the shuffle to perform depending on the first letter of the binary word (x_{r-1}) and the last letter of the binary word we want to obtain (x'_0) . Then, we use the table to compute the unique Elmsley sequence of the card at position 9 and the unique Elmsley sequence of the card at position 7 in a deck of 16 cards.

Elmsley's Problem for horseshoe permutations

É. Nadeau¹ and S. Schanck¹ ¹ Laboratoire de combinatoire et d'informatique mathématique, Université du Québec à Montréal, Montreal, Canada

-0
-1
-2
-3

f $x_{r-1} = 0$ f $x_{r-1} = 1$

 $x_{r-1} = 0$

Boundaries, boundary cards and middle cards

Assume a deck of $2n = 2^r m$ cards with m > 1 odd. **Definition 2.** The order 1 boundary is the separate deck into two halves that we call subdecks (of order i boundaries for $2 \leq i \leq r$ are the separation i-1 subdecks into two equal parts.

Definition 3. A card is a boundary card if it is or below a boundary, or if it is the top or bottom

Definition 4. A middle card is a card in the center of one of the smallest subdecks defined by the boundaries.

Boundary cards

The *in* shuffle always brings the last card to the top of the deck while the *out* fixes the top card. Hence, to get on top, a card needs to get to the last position first. Similarly, to go to the last position a card must pass through the order 1 boundary. **Proposition 1.** The out shuffle sends the card which is under an order i boundary to an order i - 1 boundary. The in shuffle sends the card which is above an order i boundary to an order i-1 boundary. Also, after a shuffle, all cards at order i - 1 boundaries came from the same side of order i boundaries.

Theorem 2 (N.–S. [2, 3]). Every boundary card has a unique Elmsley sequence. If the boundary card is of order i, then its Elmsley sequence is of length i + 1. Algorithm 2. The Elmsley sequence of a boundary card is obtained by applying the 2^r-algorithm to the deck consisting only of the boundary cards (i.e., the deck obtained by removing the non-boundary cards).

Middle cards

Remark that both the *in* and *out* horseshoe shuffles move middle cards to the highest possible order boundaries, and that all such boundary cards are obtained this way. This implies that the Elmsley sequences of all non-boundary cards are not unique.

Theorem 3 (N.–S. [2, 3]). A card has a unique Elmsley sequence iff it is a boundary card. (All cards in a deck of size 2^r are boundary cards.)

	0
	<u> </u>
	2
paration of the	
	4
order 1) The	5
	6
ns of the order	7
	8
	9
	10
7. ,7 7	11
directly above	12
1	12
n card.	10
	15
onton of one of	10
	10

- $(1)\frac{p}{2}$ (came from *inverse out* on an even position)
- $2\frac{p-1}{2}$ (came from *inverse in* on an odd position)
- $(3)(m-1) \frac{p-1}{2}$ (came from *inverse out* on an odd position)
- $(4)(m-1) \frac{p}{2}$ (came from *inverse in* on an even position)

Trim the tree to keep only the first appearance of integers; call this finite tree T_m .

Algorithm 3. To compute the sequence to a middle position of a card x we then proceed as follow:

- 1. Compute $a = x \pmod{m}$.
- 3. Add S to the sequence.
- 4. If S(x) is not a middle position, repeat with $x \leftarrow S(x)$.

Tools for the proof

Construction rules of T

Construction rules of T_m

References

- 2016.
- d'informatique mathématique (LaCIM), Université du Québec à Montréal, August 2016.
- [3] Émile Nadeau and Stéphanie Schanck. Résultats sur le problème d'Elmsley pour les mélanges horseshoe. Rapport technique, Laboratoire de combinatoire et d'informatique mathématique (LaCIM), Université du Québec à Montréal, August 2015.

Permutation Patterns 2017

Other cards

Theorem 4 (N.–S. [2, 3]). For each non-boundary card, the shortest sequence of in and out horseshoe shuffles that moves it to a middle card position is unique. Consequently, all non-boundary cards have exactly two Elmsley sequences.

Build a tree T_m starting with root $\frac{m-1}{2}$ and recursively applying the following rules:

2. Determine the next shuffle S: if the incoming edge of a in T_m is labeled (1) or (3) the shuffle is an out shuffle, otherwise it's an in shuffle.

Figure 2: The sequence for card 7 in a 26 card deck is out, in, in.

[1] Steve Butler, Persi Diaconis, and Ron Graham. The mathematics of the flip and horseshoe shuffles. Amer. Math. Monthly, 123(6):542–556,

[2] Émile Nadeau. Résolution du problème d'Elmsley pour les mélanges horseshoe. Rapport technique, Laboratoire de combinatoire et