/\/\I Elmsley’s Problem for horseshoe permutations
M

[ Horseshoe Shuflles and Elmsley’s Problem ] [

Definition 1. To perform a horseshoe shuffle on a deck with 2n cards:

1. split the deck perfectly in half,
2. reverse the order of the cards in the second half, and
3. interlace perfectly the two halves.

Out horseshoe shuffile: top card stays on top
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Elmsley’s problem. Find all minimal sequences of horseshoe shuffles that move
a given card to the top of the deck.

[ Deck of size 2" ]

Theorem 1 (Butler—Diaconis—Graham [1]). FEvery card in a deck of 2" cards has
a unique Elmsley sequence.

If we encode the positions as binary words x,_1 - - - o, then we have

Tp_o... 21000 ifax,_1=0
out shuffle : x, 12, o.. 0109 — < ' L
Lyp—9 " $1$01 it Lyr—1 = 1
. Tp_o... 2109l 1 x,_1=0
in shuffle : &, 12, _o.. 01200 — { " L
Tr_o..x1x00 ifax,_1=1

Algorithm 1. This leads to an algorithm to compute the unique Elmsley se-
quence for every card.
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Figure 1: The table indicates the shuffle to perform depending on the first letter of the binary word (z,_1) and the
last letter of the binary word we want to obtain (x3). Then, we use the table to compute the unique Elmsley sequence
of the card at position 9 and the unique Elmsley sequence of the card at position 7 in a deck of 16 cards.
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Boundaries, boundary cards and middle cards ]

Assume a deck of 2n = 2"m cards with m > 1 odd.

Definition 2. The order 1 boundary s the separation of the
deck into two halves that we call subdecks (of order 1). The
order ¢ boundaries for 2 < 1 < r are the separations of the order
v — 1 subdecks into two equal parts.
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Definition 3. A card is a boundary card if it is directly above
or below a boundary, or if it is the top or bottom card.
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Definition 4. A middle card is a card in the center of one of
the smallest subdecks defined by the boundaries.

[ Boundary cards ]

The n shuffle always brings the last card to the top of the deck while the out fixes
the top card. Hence, to get on top, a card needs to get to the last position first.
Similarly, to go to the last position a card must pass through the order 1 boundary.
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Proposition 1. The out shuffle sends the card which is under an order i bound-
ary to an order 1 — 1 boundary. The in shuffle sends the card which is above
an order i boundary to an order v — 1 boundary. Also, after a shuffle, all cards
at order 1 — 1 boundaries came from the same side of order v boundaries.

Theorem 2 (N.-S. |2, 3]). Every boundary card has a unique Elmsley sequence.
If the boundary card is of order 1, then its Elmsley sequence is of length 1 + 1.

Algorithm 2. The Elmsley sequence of a boundary card is obtained by applying
the 2" -algorithm to the deck consisting only of the boundary cards (i.e., the deck
obtained by removing the non-boundary cards).

[ Middle cards ]

Remark that both the in and out horseshoe shuffles move middle cards to the highest
possible order boundaries, and that all such boundary cards are obtained this way:.
This implies that the Elmsley sequences of all non-boundary cards are not unique.

Theorem 3 (N-S. |2, 3]). A card has a unique Elmsley sequence iff it is a
boundary card. (All cards in a deck of size 2" are boundary cards.)
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[ Other cards ]

Theorem 4 (N.-S. |2, 3]). For each non-boundary card, the shortest sequence of
in and out horseshoe shuffles that moves it to a middle card position is unique.
Consequently, all non-boundary cards have exactly two Elmsley sequences.

Build a tree 1, starting with root mT_l and recursively applying the following rules:
(Dg (came from inverse out on an even position)
2P (came from inverse in on an odd position)

3)(m — 1) — B2 (came from inverse out on an odd position)

4 (m — 1) — £ (came from inverse in on an even position)

Trim the tree to keep only the first appearance of integers; call this finite tree ﬁl

Algorithm 3. To compute the sequence to a middle position of a card r we
then proceed as follow:

1. Compute a = x (mod m).

2. Determine the next shuffle S: if the incoming edge of a in ﬁ@ 15 labeled
(D) or (3) the shuffle is an out shuffle, otherwise it’s an in shuffle.

3. Add S to the sequence.

4. If S(x) is not a middle position, repeat with x <— S(x).
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Figure 2: The sequence for card 7 in a 26 card deck is out, in, in.

Tools for the proof

Construction rules of T’
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