Quadrant marked mesh patterns in 123-avoiding permutations

Overview

- ► Mesh patterns are extension of classical patterns as statistics of permutations. The notion of mesh patterns was introduced by Brändén and Claesson.
- Kitaev and Remmel initiated the systematic study of distribution of quadrant marked mesh patterns on permutations.
- ► This study was extended to 132-avoiding permutations by Kitaev, Remmel and Tiefenbruck.
- Our goal: to study the distribution of quadrant marked mesh patterns in 123-avoiding permutations.

Preliminary

Classical Permutation Patterns

- red[w] Given a sequence $w = w_1 \dots w_n$ of distinct integers, red[w] is the permutation found by replacing the i^{th} largest integer that appears in σ by i. **Example.** If w = 4592, then red[w] = 2341.
- ► Given a permutation $\tau = \tau_1 \dots \tau_j$ in the symmetric group S_i , we say that the pattern τ occurs in $\sigma = \sigma_1 \dots \sigma_n \in S_n$ provided there exists $1 \le i_1 < \cdots < i_j \le n$ such that $\operatorname{red}[\sigma_{i_1} \dots \sigma_{i_j}] = \tau$. We say that a permutation σ avoids the pattern τ if τ does not occur in σ .
- Let $S_n(\tau)$ denote the set of permutations in S_n which avoid τ .

Quadrant Marked Mesh Patterns

► The graph of $\sigma = \sigma_1 \dots \sigma_n$, $G(\sigma)$, is the set of points (i, σ_i) for $i = 1, \ldots, n$.

Figure 1: The graph $G(\sigma)$ of $\sigma = 471569283$.

- We say that σ_i in σ matches the quadrant marked mesh pattern MMP(a, b, c, d) if taking (i, σ_i) as its origin in $G(\sigma)$, there are $\geq a$ points in quadrant $I_1 \geq b$ points in quadrant II, $\geq c$ points in quadrant III, and $\geq d$ points in quadrant IV.
 - **Example.** If $\sigma = 471569283$, the point $\sigma_4 = 5$ matches the marked mesh pattern MMP(2, 1, 2, 1).
- ▶ We consider MMP(a, b, c, d) where a, b, c, $d \in \mathbb{N} \cup \{\emptyset\}$. A coordinate equaling \emptyset means there is no points in the corresponding quadrant. Using the (two-dimensional) notation of Úlfarsson for marked mesh patterns, we have

$$MMP(0, 0, k, 0) = \frac{k}{k}$$
,

$$MMP(0, a, b, c) = \frac{a}{b} \quad , \quad MMP(0, 0, \emptyset, k) = \frac{a}{k} .$$

For any $a, b, c, d \in \{\emptyset\} \cup \mathbb{N}$ and permutation τ , we let $Q_{n,\tau}^{(a,b,c,d)}(x) = \sum_{n} x^{\min(a,b,c,d)}(\sigma)$ and

$$Q_{\tau}^{(a,b,c,d)}(t,x) = 1 + \sum_{n\geq 1} t^n Q_{n,\tau}^{(a,b,c,d)}(x)$$

For any a, b, c, d, we write $Q_{n,\tau}^{(a,b,c,d)}(x)|_{x^k}$ for the coefficient of x^k in $Q_{n\tau}^{(a,b,c,d)}(x)$.

Dyck Path Bijections

- ightharpoonup A down-right Dyck path is a lattice path from (0, n)to (n,0) which stays on or below the diagonal x=-y.
- \triangleright D_n is the set of $n \times n$ Dyck paths.
- Many of our results are proved by these two bijections:
 - **1.** Krattenthaler's bijection, $\Phi: S_n(132) \to D_n$.
 - **2.** Elizalde and Deutsch's bijection, $\Psi: \mathcal{S}_n(123) \to \mathcal{D}_n$.

► The map $\Phi: S_n(132) \to D_n$ is defined by mapping the left-to-right minima to peaks of a Dyck path, as shown in Figure 2. The map

 $\Phi^{-1}: D_n \to S_n(132)$ is described by marking the peaks and lowest rows without mark for the columns without a peak from left to right.

Figure 2: $S_n(132)$ to \mathcal{D}_n

► The map $\Psi: S_n(123) \to D_n$ is defined by the exact same process. The map Φ^{-1} is described by marking the peaks, and highest rows without mark for the columns without a peak from left to right.

Figure 3: $S_n(123)$ to \mathcal{D}_n

General Results about Q₁₂₃^(a,b,c,d)(t, x)

- \triangleright $S_n(123)$ is closed under the operation reverse-complement and inversion, Thus
- ▶ **Lemma.** or any $a, b, c, d \in \{\emptyset\} \cup \mathbb{N}$,

$$Q_{n,123}^{(a,b,c,d)}(x) = Q_{n,123}^{(c,d,a,b)}(x)$$
$$= Q_{n,123}^{(c,b,a,d)}(x) = Q_{n,123}^{(a,d,c,b)}(x)$$

- Any 123-avoiding permutation can not have pattern MMP(a, b, c, d) where $a, c \ge 1$, otherwise the permutation contains an occurrence of 123.
- ► Thus, no permutations $\sigma \in S_n(123)$ can match MMP(a, b, c, d) where $a, c \ge 1$. If $a \ge 1$, then $Q_{123}^{(a,b,0,d)}(t,x) = Q_{123}^{(a,b,\emptyset,d)}(t,x).$
- The map $\Psi^{-1} \circ \Phi$ give a bijection between $S_n(132)$ and $S_n(123)$, see Figure 4. This bijection allows us to prove the following theorem.

Theorem 1. For any k > 0 and ℓ , $m \ge 0$, $Q_{123}^{(k,\ell,0,m)}(t,x) = Q_{123}^{(k,\ell,\emptyset,m)}(t,x) = Q_{132}^{(k,\ell,\emptyset,m)}(t,x).$

Figure 4: $S_n(132)$ to $S_n(123)$ keeps MMP(k, ℓ, \emptyset, m)

- Thus to compute $Q_{123}^{k,\ell,0,m}(x,t)$ where k > 0, we need only compute $Q_{132}^{k,\ell,\emptyset,m}(x,t)$ which can easily be computed using the techniques of Kiteav, Remmel, and Tiefenbruck. They computed $Q_{132}^{k,0,\emptyset,0}(x,t)$ where $k \ge 0$.
- We can find the generating function $Q_{132}^{k,\ell,\emptyset,m}(x,t)$ for any $k, \ell, m \geq 0$.
- ▶ We list a couple of examples of our results below. **Theorem 2.**

$$Q_{132}^{(0,0,\emptyset,0)}(t,x) = \frac{1+t-tx-\sqrt{(1+t-tx)^2-4t}}{2t}.$$
For $k > 0$,

 $Q_{132}^{(0,k,\emptyset,0)}(t,x) = \frac{1+t\sum_{i=1}^{k-1}C_{i-1}t^{i-1}(Q_{132}^{(0,k-i,\emptyset,0)}(t,x)-Q_{132}^{(0,0,\emptyset,0)}(t,x))}{1-tQ_{132}^{(0,0,\emptyset,0)}(t,x))}$ **Theorem 3.** For all $k, \ell > 0$,

$$Q_{132}^{(k,\ell,\emptyset,0)}(t,x) = 1 + t \sum_{i=1}^{\ell-1} C_{i-1} t^{i-1} Q_{132}^{(k,\ell-i,\emptyset,0)}(t,x)$$

$$+(Q_{132}^{(k-1,\ell,\emptyset,0)}(t,x)-\sum_{i=0}^{\ell-2}C_it^i)Q_{132}^{(k,0,\emptyset,0)}(t,x).$$

- **Theorem 1** implies that $Q_{n,123}^{(a,b,0,d)}(x)|_{x^k} = Q_{n,123}^{(0,d,a,b)}(x)|_{x^k} = Q_{n,132}^{(a,b,\emptyset,d)}(x)|_{x^k}.$
- About the coefficients of x^0 and x^1 in functions $Q_{n,132}^{(a,b,\emptyset,d)}(x)$, we prove that

- ► Theorem 4. $Q_{n,132}^{(k,\ell,\emptyset,m)}(x)\Big|_{x^0} = Q_{n,132}^{(k,\ell,0,m)}(x)\Big|_{x^0}$ and $Q_{n,132}^{(k,\ell,\emptyset,m)}(x)\big|_{x^1} = Q_{n,132}^{(k,\ell,0,m)}(x)\big|_{x^1}.$
- The reason that this theorem is interesting is that many explicit formulas were developed for the coefficients $Q_{n,132}^{(k,\ell,0,m)}(x)|_{x^0}$ and $Q_{n,132}^{(k,\ell,0,m)}(x)|_{x^1}$ by Kiteav, Remmel, and Tiefenbruck.
- We also prove the following theorems giving formula about the highest power of x in all generating functions $Q_{n,132}^{(a,b,c,d)}(x)$.

Theorem 5. If $n \ge k + \ell + 1$, then

$$\begin{aligned} Q_{n,123}^{(0,k,0,\ell)}(x)\big|_{x^{n-k-\ell}} &= Q_{n,132}^{(0,k,0,\ell)}(x)\big|_{x^{n-k-\ell}} = C_k C_{n-k-\ell} C_\ell, \\ Q_{n,123}^{(\emptyset,k,\emptyset,\ell)}(x)\big|_{x^{n-k-\ell}} &= Q_{n,132}^{(\emptyset,k,\emptyset,\ell)}(x)\big|_{x^{n-k-\ell}} = C_k C_\ell, \\ Q_{n,123}^{(0,k,\emptyset,\ell)}(x)\big|_{x^{n-k-\ell}} &= Q_{n,132}^{(0,k,\emptyset,\ell)}(x)\big|_{x^{n-k-\ell}} = C_k C_\ell, \text{ and} \\ Q_{n,123}^{(k,\ell,\emptyset,0)}(x)\big|_{x^{n-k-\ell}} &= Q_{n,132}^{(k,\ell,\emptyset,0)}(x)\big|_{x^{n-k-\ell}} &= \frac{k+1}{k+\ell+1} {k+2\ell \choose \ell}. \end{aligned}$$

Theorem 6. For $n \ge k + \ell + m + 1$ and k > 0, $Q_{n,123}^{(k,\ell,\emptyset,m)}(x)\big|_{x^{n-k-\ell-m}} = Q_{n,132}^{(k,\ell,\emptyset,m)}(x)\big|_{x^{n-k-\ell-m}}$ $= \frac{(k+1)^2}{(k+\ell+1)(k+m+1)} {k+2\ell \choose \ell} {k+2m \choose m}.$

- The only generating functions $Q_{123}^{(a,b,c,d)}(t,x)$ which we can not compute via **Theorem 1** are generating functions of the form $Q_{123}^{(0,b,0,d)}(t,x)$.
- In the case $Q_{123}^{(0,k,0,0)}(t, x)$, we solve the generating function by separately track peaks and non-peaks.
- We define

$$Q_{123}^{(0,\binom{k_1}{k_2},0,0)}(t,x_0,x_1) = \sum_{n=0}^{\infty} t^n Q_{n,123}^{(0,\binom{k_1}{k_2},0,0)}(x_0,x_1),$$

where $Q_{n,123}^{(0,\binom{k_1}{k_2},0,0)}(x_0,x_1)$

 $= \sum_{k=0}^{MMP(0,k_1,0,0)-mch \text{ of peaks}} x_1^{MMP(0,k_2,0,0)-mch \text{ of non-peaks}}$ $\sigma \in \mathcal{S}_n(123)$

- We can show that $Q_{n,123}^{(0,\binom{\kappa_1}{k_2}),0,0)}(x_0,x_1)$ satisfies simple recursions which lead to recursive formulas to compute $Q_{123}^{\kappa_2}$ $(t, x_0, x_1).$
- For example, we prove that

Theorem 7. For all $k_1, k_2 > 0$, we have

$$\begin{split} &Q_{123}^{(0,\binom{k_1}{0}),0,0)}(t,x_0,x_1)\\ &= \frac{1}{1 - tx_1 Q_{123}^{(0,\binom{0}{0}),0,0)}(t,x_0,x_1)} \left(1 + tQ_{123}^{(0,\binom{k_1-1}{0}),0,0)}(t,x_0,t_1)\right) \\ &+ tx_1 \sum_{i=2}^{k_1-1} t^{i-1} Q_{i-1,123}^{(0,\binom{0}{0}),0,0)}(1,x_1) Q_{123}^{(0,\binom{k_1-i}{0}),0,0)}(t,x_0,x_1) \\ &- tx_1 Q_{123}^{(0,\binom{0}{0}),0,0)}(t,x_0,x_1) \sum_{i=0}^{k_1-2} t^i Q_{i-1,123}^{(0,\binom{0}{0}),0,0)}(1,x_1) \right). \end{split}$$

For generating functions $Q_{123}^{(0,k,0,\ell)}(x,t)$, we divide the graph of a permutation into several regions and have the following theorem to enumerate the coefficients

Theorem 8. For any 123-avoiding permutation $\sigma = \sigma_1 \dots \sigma_n$, σ_i matches MMP $(0, k, 0, \ell)$ in σ if and only if, in the graph $G(\sigma)$ of σ , (j, σ_i) does not lie in the top k rows or the bottom ℓ rows and it does not lie in the left-most k columns or the right-most ℓ columns. Thus

$$\operatorname{mmp}^{(0,k,0,\ell)}(\sigma) = \left| \{ j | k < j \le n - \ell \text{ and } k < \sigma_j \le n - \ell \} \right|.$$

Using **Theorem 8**, we can calculate $Q_{123}^{(0,k,0,\ell)}(t,x)$ for *k*, *l* not too big. For example,

Theorem 9. For $n \ge 4$, $Q_{123}^{(0,1,0,1)}(t,x)\Big|_{t^nx^k} = 0$ unless $k \in \{n-4, n-3, n-2\}$ and

$$Q_{123}^{(0,1,0,1)}(t,x)\big|_{t^nx^{n-4}} = C_n - 2C_{n-1} + C_{n-2} - 2,$$

$$Q_{123}^{(0,1,0,1)}(t,x)\big|_{t^nx^{n-3}} = 2C_{n-1} - 2C_{n-2} + 2, \text{ and}$$

$$Q_{123}^{(0,1,0,1)}(t,x)\big|_{t^nx^{n-2}} = C_{n-2}$$

where C_n denote the n^{th} Catalan number.

Open Problems

We do not have recursion for $Q_{123}^{(0,k,0,\ell)}(x,t)$.

Conjecture. For all $k \geq 1$, we have

$$Q_{132}^{(0,k,\emptyset,0)}(t,x) = Q_{132}^{(1,k-1,\emptyset,0)}(t,x).$$

University of California San Diego, United States