
Quadrant marked mesh patterns in 123-avoiding permutations

Overview
I Mesh pa�erns are extension of classical pa�erns as

statistics of permutations. The notion of mesh
pa�erns was introduced by Brändén and Claesson.

I Kitaev and Remmel initiated the systematic study of
distribution of quadrant marked mesh pa�erns on
permutations.

I This study was extended to 132-avoiding
permutations by Kitaev, Remmel and Tiefenbruck.

I Our goal: to study the distribution of quadrant
marked mesh pa�erns in 123-avoiding
permutations.

Preliminary

Classical Permutation Patterns
I red[w] Given a sequence w = w1 . . .wn of distinct

integers, red[w] is the permutation found by replacing
the i th largest integer that appears in σ by i.
Example. If w = 4592, then red[w] = 2341.

I Given a permutation τ = τ1 . . . τj in the symmetric
group Sj, we say that the pa�ern τ occurs in
σ = σ1 . . . σn ∈ Sn provided there exists
1 ≤ i1 < · · · < ij ≤ n such that red[σi1 . . . σij] = τ . We
say that a permutation σ avoids the pa�ern τ if τ
does not occur in σ .

I Let Sn(τ ) denote the set of permutations in Sn which
avoid τ .

Quadrant Marked Mesh Patterns
I The graph of σ = σ1 . . . σn, G(σ ), is the set of points
(i,σi) for i = 1, . . . , n.
Example.
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Figure 1: The graph G(σ ) of σ = 471569283.

I We say that σi in σ matches the quadrant marked
mesh pa�ern MMP(a, b, c, d) if taking (i,σi) as its
origin in G(σ ), there are ≥ a points in quadrant I, ≥ b
points in quadrant II, ≥ c points in quadrant III, and
≥ d points in quadrant IV.
Example. If σ = 471569283, the point σ4 = 5 matches
the marked mesh pa�ern MMP(2, 1, 2, 1).

I We consider MMP(a, b, c, d) where a, b, c, d ∈ N ∪ {∅}.
A coordinate equaling ∅ means there is no points in
the corresponding quadrant. Using the
(two-dimensional) notation of Úlfarsson for
marked mesh pa�erns, we have

MMP(0, 0, k, 0) =
k

, MMP(k, 0, 0, 0) = k
,

MMP(0, a, b, c) =
a

b c
, MMP(0, 0, ∅, k) =

k
.

I For any a, b, c, d ∈ {∅} ∪ N and permutation τ , we let
Q(a,b,c,d)n,τ (x) =

∑
σ∈Sn(τ )

xmmp(a,b,c,d)(σ ) and

Q(a,b,c,d)τ (t, x) = 1 +
∑
n≥1

tnQ(a,b,c,d)n,τ (x)

I For any a, b, c, d, we write Q(a,b,c,d)n,τ (x)|xk for the
coe�icient of xk in Q(a,b,c,d)n,τ (x).

Dyck Path Bijections
I A down-rignt Dyck path is a la�ice path from (0, n)

to (n, 0) which stays on or below the diagonal x = −y.
I Dn is the set of n × n Dyck paths.
I Many of our results are proved by these two bijections:

1. Kra�enthaler’s bijection, Φ : Sn(132) → Dn.
2. Elizalde and Deutsch’s bijection, Ψ : Sn(123) → Dn.

I The map Φ : Sn(132) → Dn is defined by mapping
the le�-to-right minima to peaks of a Dyck path,
as shown in Figure 2. The map
Φ−1 : Dn→ Sn(132) is described by marking the
peaks and lowest rows without mark for the
columns without a peak from le� to right.
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Figure 2: Sn(132) to Dn

I The map Ψ : Sn(123) → Dn is defined by the exact
same process. The map Φ−1 is described by
marking the peaks, and highest rows without
mark for the columns without a peak from le� to
right.
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Figure 3: Sn(123) to Dn

General Results about Q(a,b,c,d)123 (t,x)
I Sn(123) is closed under the operation

reverse-complement and inversion, Thus
I Lemma. or any a, b, c, d ∈ {∅} ∪ N,

Q(a,b,c,d)n,123 (x) = Q(c,d,a,b)n,123 (x)

= Q(c,b,a,d)n,123 (x) = Q(a,d,c,b)n,123 (x)
I Any 123-avoiding permutation can not have

pa�ern MMP(a, b, c, d) where a, c ≥ 1, otherwise
the permutation contains an occurrence of 123.

I Thus, no permutations σ ∈ Sn(123) can match
MMP(a, b, c, d) where a, c ≥ 1. If a ≥ 1, then
Q(a,b,0,d)123 (t, x) = Q(a,b,∅,d)123 (t, x).

I The map Ψ−1 ◦ Φ give a bijection between Sn(132)
and Sn(123), see Figure 4. This bijection allows us
to prove the following theorem.
Theorem 1. For any k > 0 and `,m ≥ 0,
Q(k,`,0,m)123 (t, x) = Q(k,`,∅,m)123 (t, x) = Q(k,`,∅,m)132 (t, x).
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Figure 4: Sn(132) to Sn(123) keeps MMP(k, `, ∅,m)

I Thus to compute Qk,`,0,m
123 (x, t) where k > 0, we

need only compute Qk,`,∅,m
132 (x, t) which can easily

be computed using the techniques of Kiteav,
Remmel, and Tiefenbruck. They computed
Qk,0,∅,0
132 (x, t) where k ≥ 0.

I We can find the generating function Qk,`,∅,m
132 (x, t)

for any k, `,m ≥ 0.
I We list a couple of examples of our results below.

Theorem 2.

Q(0,0,∅,0)132 (t, x) =
1 + t − tx −

√
(1 + t − tx)2 − 4t
2t

.

For k > 0,

Q(0,k,∅,0)132 (t, x) = 1+t
∑k−1

i=1 Ci−1ti−1(Q
(0,k−i,∅,0)
132 (t,x)−Q(0,0,∅,0)132 (t,x))

1−tQ(0,0,∅,0)132 (t,x))
Theorem 3. For all k, ` > 0,

Q(k,`,∅,0)132 (t, x) = 1 + t
`−1∑
i=1

Ci−1ti−1Q
(k,`−i,∅,0)
132 (t, x)

+(Q(k−1,`,∅,0)132 (t, x) −
`−2∑
i=0

Citi)Q
(k,0,∅,0)
132 (t, x).

I Theorem 1 implies that
Q(a,b,0,d)n,123 (x)|xk = Q(0,d,a,b)n,123 (x)|xk = Q(a,b,∅,d)n,132 (x)|xk.

I About the coe�icients of x0 and x1 in functions
Q(a,b,∅,d)n,132 (x), we prove that

I Theorem 4. Q(k,`,∅,m)n,132 (x)
��
x0 = Q(k,`,0,m)n,132 (x)

��
x0 and

Q(k,`,∅,m)n,132 (x)
��
x1 = Q(k,`,0,m)n,132 (x)

��
x1.

I The reason that this theorem is interesting is that
many explicit formulas were developed for the
coe�icients Q(k,`,0,m)n,132 (x)

��
x0 and Q(k,`,0,m)n,132 (x)

��
x1 by Kiteav,

Remmel, and Tiefenbruck.
I We also prove the following theorems giving formula

about the highest power of x in all generating
functions Q(a,b,c,d)n,132 (x).
Theorem 5. If n ≥ k + ` + 1, then

Q(0,k,0,`)n,123 (x)
��
xn−k−` = Q(0,k,0,`)n,132 (x)

��
xn−k−` = CkCn−k−`C`,

Q(∅,k,∅,`)n,123 (x)
��
xn−k−` = Q(∅,k,∅,`)n,132 (x)

��
xn−k−` = CkC`,

Q(0,k,∅,`)n,123 (x)
��
xn−k−` = Q(0,k,∅,`)n,132 (x)

��
xn−k−` = CkC`, and

Q(k,`,∅,0)n,123 (x)
��
xn−k−` = Q(k,`,∅,0)n,132 (x)

��
xn−k−` =

k+1
k+`+1

(k+2`
`

)
.

Theorem 6. For n ≥ k + ` +m + 1 and k > 0,
Q(k,`,∅,m)n,123 (x)

��
xn−k−`−m = Q(k,`,∅,m)n,132 (x)

��
xn−k−`−m

=
(k+1)2

(k+`+1)(k+m+1)
(k+2`
`

) (k+2m
m

)
.

I The only generating functions Q(a,b,c,d)123 (t, x) which we
can not compute via Theorem 1 are generating
functions of the form Q(0,b,0,d)123 (t,x).

I In the case Q(0,k,0,0)123 (t,x), we solve the generating
function by separately track peaks and non-peaks.

I We define

Q
(0,(k1k2),0,0)
123 (t, x0, x1) =

∞∑
n=0

tnQ
(0,(k1k2),0,0)
n,123 (x0, x1),

where Q
(0,(k1k2),0,0)
n,123 (x0, x1)

=
∑

σ∈Sn(123)

xMMP(0,k1,0,0)-mch of peaks
0 xMMP(0,k2,0,0)-mch of non-peaks

1 .

I We can show that Q
(0,(k1k2),0,0)
n,123 (x0, x1) satisfies simple

recursions which lead to recursive formulas to

compute Q
(0,(k1k2),0,0)
123 (t, x0, x1).

I For example, we prove that
Theorem 7. For all k1, k2 > 0, we have

Q
(0,(k10 ),0,0)
123 (t, x0, x1)

=
1

1 − tx1Q
(0,(00),0,0)
123 (t, x0, x1)

(
1 + tQ(0,(

k1−1
0 ),0,0)

123 (t, x0, x1)

+tx1
k1−1∑
i=2

ti−1Q
(0,(00),0,0)
i−1,123 (1, x1)Q

(0,(k1−i0 ),0,0)
123 (t, x0, x1)

−tx1Q
(0,(00),0,0)
123 (t, x0, x1)

k1−2∑
i=0

tiQ
(0,(00),0,0)
i−1,123 (1, x1)

ª®¬ .
I For generating functions Q(0,k,0,`)123 (x, t), we divide the

graph of a permutation into several regions and have
the following theorem to enumerate the coe�icients
Q(0,k,0,`)n,123 (x)

��
xs.

Theorem 8. For any 123-avoiding permutation
σ = σ1 . . . σn, σj matches MMP(0, k, 0, `) in σ if and
only if, in the graph G(σ ) of σ , (j,σj) does not lie in the
top k rows or the bo�om ` rows and it does not lie in
the le�-most k columns or the right-most ` columns.
Thus

mmp(0,k,0,`)(σ ) =
����{j |k < j ≤ n − ` and k < σj ≤ n − `}

����.
I Using Theorem 8, we can calculate Q(0,k,0,`)123 (t, x) for

k, l not too big. For example,
Theorem 9. For n ≥ 4, Q(0,1,0,1)123 (t, x)

��
tnxk = 0 unless

k ∈ {n − 4, n − 3, n − 2} and

Q(0,1,0,1)123 (t, x)
��
tnxn−4 = Cn − 2Cn−1 + Cn−2 − 2,

Q(0,1,0,1)123 (t, x)
��
tnxn−3 = 2Cn−1 − 2Cn−2 + 2, and

Q(0,1,0,1)123 (t, x)
��
tnxn−2 = Cn−2

where Cn denote the nth Catalan number.

Open Problems

We do not have recursion for Q(0,k,0,`)123 (x, t).

Conjecture. For all k ≥ 1, we have

Q(0,k,∅,0)132 (t, x) = Q(1,k−1,∅,0)132 (t, x).

This is a sample of a wiiiide column

I One, two, pick up my shoe
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