Quadrant marked mesh patterns in 123-avoiding permutations

Overview

» Mesh patterns are extension of classical patterns as
statistics of permutations. The notion of mesh
patterns was introduced by Brandén and Claesson.
» Kitaev and Remmel initiated the systematic study of
distribution of quadrant marked mesh patterns on
permutations.

» This study was extended to 132-avoiding
permutations by Kitaev, Remmel and Tiefenbruck.
» QOur goal: to study the distribution of quadrant
marked mesh patterns in 123-avoiding
permutations.

Preliminary

Classical Permutation Patterns

» red[w] Given a sequence w = wj ... w, of distinct
integers, red| w| is the permutation found by replacing

the i th largest integer that appears in o by i.
Example. If w = 4592, then red[w] = 2341.

» Given a permutation 7 = 77 ... 7; in the symmetric
group S;, we say that the pattern 7 occurs in

o =01...0, €S, provided there exists
1 <i3 <--- << nsuchthatredfo;...0;] = 7. We
say that a permutation o avoids the pattern 7 if r

does not occur in o.
» Let S,(7) denote the set of permutations in S, which
avoid .

Quadrant Marked Mesh Patterns

» The graph of 0 = 0y ... 0y, G(0), is the set of points
(i,0;))fori=1,...,n

Example.
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Figure 1: The graph G(o) of 0 = 471569283.

» We say that o; in 0 matches the quadrant marked
mesh pattern MMP(aq, b, c, d) if taking (i, g;) as its
origin in G(o), there are > a points in quadrant |, > b
points in quadrant Il, > ¢ points in quadrant Ill, and
> d points in quadrant IV.

Example. If 0 = 471569283, the point o4 = 5 matches
the marked mesh pattern MMP(2, 1, 2, 1).

» We consider MMP(a, b, c, d) where a, b, c,d € N U {0}.
A coordinate equaling () means there is no points in
the corresponding quadrant. Using the
(two-dimensional) notation of Ulfarsson for
marked mesh patterns, we have

MMP(0, 0, k, 0) = ., MMP(k, 0, 0, 0) = ,

» Foranya,b,c,d € {(Z)} U N and permutation 7, we let

Q(a b,c, d)( ) _ Z xmmp(a,b,c,d)(o.) and
0€S,(7)

abcd)(t )_1+Zt Q(ade)( )

n>1

» Forany a,b,c, d we write anl;b’c’d)(x)lxk for the
coefficient of x* in Q(a . d)( ).

Dyck Path Bijections

» A down-rignt Dyck path is a lattice path from (0, n)
to (n, 0) which stays on or below the diagonal x = —y.
» D, is the set of n X n Dyck paths.

» Many of our results are proved by these two bijections:

1. Krattenthaler’s bijection, ® : 5,,(132) — D,.
2. Elizalde and Deutsch’s bijection, ¥ : S,(123) — D,.
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The map ® : 5,(132) — D, is defined by mapping  »
the left-to-right minima to peaks of a Dyck path,

as shown in Figure 2. The map >
®!: D, — S,(132) is described by marking the

peaks and lowest rows without mark for the

columns without a peak from left to right.
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Figure 2: §,(132) to D,

The map ¥ : 5,(123) — D, is defined by the exact
same process. The map ® ! is described by
marking the peaks, and highest rows without
mark for the columns without a peak from left to
right.
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Figure 3: §,(123) to D,
>
(a,b,c.,d)
General Results about Q7" (t, x)
S,(123) is closed under the operation
reverse-complement and inversion, Thus
Lemma. orany a, b,c,d € {0} UN,
(a,b,c,d) _ A(cd,a,b)
Q123 (x) = Q123 (x)
(c b,a,d) (a d,c,b) >
Quizs (¥) = Q055 (%)

Any 123-av01d|ng permutation can not have
pattern MMP(a, b, c, d) where a, c > 1, otherwise
the permutation contains an occurrence of 123. >

Thus, no permutations ¢ € §,(123) can match
MMP(a, b, c, d) where a,c > 1. If a > 1, then

b,0.d .b,0.d
0571, >—Q§33 (t, x).

The map ¥~! o ® give a bijection between S,(132)
and 5,(123), see Figure 4. This bijection allows us
to prove the following theorem.

Theorem 1. Forany k> 0and £, m > 0,

k,(,0, k,l.0, kL0,
§23 "(t, x) = §23 "t x) = 532 "(t, x).
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Figure 4: §,(132) to S,(123) keeps MMP(k, £, 0, m)
k,£,0,m

123
need only compute Qfég’@’m(x, t) which can easily

be computed using the techniques of Kiteay,
Remmel, and Tiefenbruck. They computed

fé%’@’o(x, t) where k > 0.

We can find the generating function Q
for any k,€, m > 0.
We list a couple of examples of our results below.

Thus to compute Q (x,t) where k > 0, we

k,t,0,
5o (x, 1)

Theorem 2. >
010000, 1) _ 1+t—tx—(1+¢t- tx)2—4t.
For k > 0,

Q(ok(z)o)(t ) 1+t25< 11 Ci_qt™ 1(Q§0k z@o)(t X)— ngoo)o)(t X))
132 — (0,0,0,0)
1-1Q.3," " (t,x))

Theorem 3. For all k, f > 0,

H(QEO0 (1 ) Z CitH (1 ).

Theorem 1 implies that

b,0,d ,d,a,b ,b,0,d
’(1a12§) )( )k = ;(10123a )(x)|xk = Qz(fmz )(x)|xk°

About the coefficients of x° and x! in functions

Qf(lai?,’g ’d)(x), we prove that

We do not have recursion for le

Theorem 4. Q(km m)(x)lxo =

132

(k,£,0,m) (kf 0,m)
Q12 (x)‘xl = O 132 (x)|x1.
The reason that this theorem is interesting is that
many explicit formulas were developed for the

coefficients Q( 1{;; m)(x)‘ and Q(ké; m)(x)‘x1 by Kiteav,
Remmel, and Tiefenbruck.

We also prove the following theorems giving formula
about the highest power of x in all generating
functions Qn 1320 d)(x).

Theorem 5. Ifn> k+ ¢+ 1, then
,k,0,€ ,k,0,€
Q;(»lolzf;) )( )xn—k—f — Ql(”l(,)1320 )(X) xn—k—f — CkCn—k—fcfa
(0 k(bf)( )xn—k—f — Q((D’k,@’f)(x) xn—k=C — Ckcfa

n 123 n,132
(0.k0.0) _ A(0,k,0,0) _
Qn 123 ( )xn—k—f — Qn,132 (x) k=0 = Cka, and

k,£,0,m
Qg,mo )(x)‘xo and

(kf@O) _ A(kt,0,0) _ k+1 (k+2C
n123 ( )x”—k—f o Qn,132 (X) xh—k=t = M( 4 )
Thkeorem 6. Forn > klj—€+ m+1and k > 0,
’8307 9590,
O™ O s = Oy ™ O it
(k+1)? (k+2€) (k+2m)
(k+£+1)(k+m+1) m J°

The only generating functions le3 d)(t, x) which we
can not compute via Theorem 1 are generating

functions of the form Q(Ob - d)(t X).
In the case Q(lzzl;OO)(t, x), we solve the generating

function by separately track peaks and non-peaks.
We define

(0,(;1).0,0) (0,(;1).0,0)
legk (t X0, X 1) — Z t Qn 12k3 ( X0, xl)a

(0,(;1).0,0)

where Q, 1,5 (%0, x1)
Z xMMP(O,kl,0,0)-mCh of peakstMP(o,kz,o,o)-mch of non-peaks
0 1 :
0€S(123)
(0,(} 1)-0.0)

We can show that Q, ,,5"  (xo, x1) satisfies simple

recursions whlch lead to recursive formulas to
0.(; 1) 0,0)

compute Q123 (t, xp, X1).

For example, we prove that

Theorem 7. For all kq, ko, > 0, we have

(0,(%1),0,0)
123( O) (ta X05 xl)
1 kl .00
B (0,(3):0.0) (1 i thZ( ) (%)
1 - tx 1230 (2, X0, X1)
0,(°),0,0 0,(¥171),0,0
+tx Z tl ! f 1(01)23 ) xl)ngg( ’ ) )(t9 x()a xl)

: \
—Ixq §23( 00 O) X1) Z QEO 1( 01)22 . 1)) °

For generating functions Q123 Og)(x, t), we divide the

graph of a permutation into several regions and have

the following theorem to enumerate the coefficients
(0,k,0,¢)

Qnizs (%)

Theorem 8. For any 123-avoiding permutation

0 = 03 ...0y 0j matches MMP(0, k, 0, ¢) in o if and

only if, in the graph G(o) of o, (j, o) does not lie in the

top k rows or the bottom £ rows and it does not lie in

the left-most k columns or the right-most £ columns.

Thus

mmp(O,k,O,Z)(o,) _

{ilk<j<n-{Cand k < o0; < n—{(}|.

Using Theorem 8, we can calculate QlO kOZ)(t, x) for
k, [ not too big. For example,

Theorem 9. For n > 4, Qioml)(t, X)
ke{n—-4,n-3,n-2} and

ng - 1)(t’ x) fhyn—4 — Cn o 2Cn—1 + Cn—z o 29
Q&O _ 1)(t’ X) =3 — ch—l o 2Cn—2 + 23 and
Qio - 1)(t9 x) Ty =2 — Cn—2

where C,, denote the nth Catalan number.

ok = 0 unless

Open Problems
0.0.0( 1 )

Conjecture. For all k > 1, we have

(0.0.0)4 1y =

1,k—1,0,0
o ( \(t, %).
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