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Abstract
We generalize Euler’s Finite Difference Theorem [5] to produce a polynomial identity involving Stirling num-

bers of the second kind, denoted by
{
n
k

}
. Applications of this formula are given.

Introduction
Stepping back about 10 years, Dence [2] uses the Laplace transform of sinn(t) to generate the follow-
ing two identities for positive integers n, k:

bn/2c∑
j=0

(−1)j
(
n

j

)
(n− 2j)k =

{
(2)n−1n!, k = n, and
0, 0 ≤ k < n

, (1)

and
bn/2c∑
j=0

(−1)j

n− 2j

(
n

j

)
= (−1)bn/2c 2n−1n!

(1 · 3 · 5 · · · · · n)2
, if n is odd. (2)

Two years later, Katsuura [3] proves a generalization of Equation (1), namely, for any x, y ∈ C,
n∑
j=0

(−1)j
(
n

j

)
(y + jx)k =

{
(−x)nn!, k = n, and
0, 0 ≤ k < n.

(3)

Katsuura remarks that it is “curious” that no y term appears on the righthand side of this equation
a fact which is explained in 2014 by proving Equation (3) using involutions on colored words [4].
While this combinatorial proof addresses only the case where 0 ≤ k ≤ n, that stipulation on the
relative order of k, n is artificial. Indeed, using the same involution, we get the following result, of
which Equations (1) and (3) are corollaries.

Theorem 1. For nonnegative integers n, k and for any x, y ∈ C,

n∑
j=0

(−1)j
(
n

j

)
(jx + y)k = (−1)nn!

k∑
i=0

(
k

i

){
i
n

}
xiyk−i. (4)

In this way, viewed purely as a polynomial identity, we see from the righthand side that, due to the

presence of the
{
i
n

}
, positive powers of y exist only in the case where k > n, i.e., the aforemen-

tioned curiosity is explained. Further, there is nothing stopping us from replacing x, y ∈ C with some
other indeterminate variables X, Y .

Stepping back for a moment, and realizing that very few simple formulae involving Stirling numbers
are new, we see that Equation (3) is really a direct application of the following theorem.

Theorem 2 (Euler’s Finite Difference Theorem [5]). Let f (x) = a0 + a1x + a2x
2 + · · · + akx

k be a
complex polynomial and let n be a nonnegative integer. Then

n∑
j=0

(−1)j
(
n

j

)
f (j) =

{
(−1)nann!, k = n, and
0, 0 ≤ k < n.

Our goal is to generalize Theorem 2 and then use that generalization for our own combinatorial
purposes. To that end, we start with the following well-known formula involving Stirling numbers of
the second kind:

n∑
j=0

(−1)j
(
n

j

)
jk = (−1)nn!

{
k
n

}
.

Letting g(x) = a0 + a1x + a2x
2 + · · · , we multiply both sides of the preceding equation by ak and

sum over all k ≥ 0 to obtain our desired generalization of Theorem 2:
n∑
j=0

(−1)j
(
n

j

)
g(j) = (−1)nn!

∑
k≥0

ak

{
k
n

}
. (5)

Results
Equation (5) is useful in directly generating combinatorial identities.

1. Let

g(j) = (jx + y)k =

k∑
i=0

(
k

i

)
(jx)iyk−i =

k∑
i=0

((
k

i

)
xiyk−i

)
ji,

giving us Theorem 1, which was the motivating identity.
2. Let g(j) = 1, giving that a0 = 1 and ak = 0 for k ≥ 1. This yields the well-known alternating

binomial sum identity
n∑
j=0

(−1)j
(
n

j

)
= 0.

3. Let g(j) = cos(πj) =
∑
i≥0

(−1)i(πj)2i

(2i)!
. Then

n∑
j=0

(−1)j
(
n

j

)
g(j) =

n∑
j=0

(
n

j

)
= 2n, so that

2n = (−1)nn!
∑
k≥0

(−1)kπ2k

(2k)!

{
2k
n

}
.

4. Let g(j) =
(
j

m

)
=

(j) ↓m
m!

=
1

m!
· j(j − 1) · · · (j − (m− 1)) for 0 ≤ m ≤ n. Then

n∑
j=0

(−1)j
(
n

j

)(
j

m

)
=

(−1)nn!
m!

∑
k≥0

[
m
k

]{
k
n

}
,

where
[
m
k

]
denotes the signed Stirling number of the first kind. Since the lefthand side is equal to

0 for 0 ≤ m < n and (−1)n when n = m, we quickly obtain the well-known orthogonality relation
between Stirling numbers of the first and second kind.
Similarly, letting g(j) = (j) ↑m= j(j + 1) · · · (j + (m− 1)), we obtain

n∑
j=0

(−1)j
(
n

j

)
(j) ↑m= (−1)nn!

∑
k≥0

(−1)m−k
[
m
k

]{
k
n

}
,

which can be rewritten to yield a formula for the Lah numbers, L(m,n):

L(m,n) = (−1)n

n!

n∑
j=0

(−1)j+1
(
n

j

)
(j) ↑m .

5. Broder [1] denotes the r-Stirling numbers of the first and second kind as
[
n
k

]
r

and
{
n
k

}
r
, re-

spectively.
{
n
k

}
r

is defined to be the number of set partitions of {1, 2, . . . , n} into k nonempty,

unordered parts such that 1, 2, . . . , r are in distinct parts, and thus, are all minimal elements of their

parts. The numbers
[
n
k

]
r

are defined similarly for permutations of {1, 2, . . . , n} into k disjoint

cycles. Rewriting Equation (32) from [1] and then applying Theorem 1 yields

(−1)nn!
{
k + r
n + r

}
r
=

n∑
j=0

(−1)j
(
n

j

)
(j + r)k. (6)

Multiplying both sides of the Equation (6) by zk/k! and summing over k ≥ 0 gives us the following
exponential generating function of the r-Stirling numbers:

∑
k≥0

{
k + r
n + r

}
r

zk

k!
=
ezr

n!
(ez − 1)n.

Unlike the original proof, this does not require any knowledge of the generating functions of Stir-
ling numbers themselves.
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