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Abstract
We generalize Euler’s Finite Difference Theorem [5] to produce a polynomial identity involving Stirling num-

bers of the second kind, denoted by { "

) } Applications of this formula are given.

Introduction

Stepping back about 10 years, Dence [2] uses the Laplace transform of sin’(¢) to generate the follow-
ing two identities for positive integers n, k:
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Two years later, Katsuura [3] proves a generalization of Equation (1), namely, for any z,y € C,
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Katsuura remarks that it is “curious” that no y term appears on the righthand side of this equation
a fact which 1s explained in 2014 by proving Equation (3) using involutions on colored words [4].
While this combinatorial proof addresses only the case where 0 < £ < n, that stipulation on the
relative order of k, n is artificial. Indeed, using the same involution, we get the following result, of
which Equations (1) and (3) are corollaries.

Theorem 1. For nonnegative integers n, k and for any x,y € C,
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In this way, viewed purely as a polynomial 1dentity, we see from the righthand side that, due to the
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tioned curiosity is explained. Further, there is nothing stopping us from replacing x, y € C with some

other indeterminate variables X, Y.

presence of the , positive powers of y exist only in the case where £ > n, i.e., the aforemen-

Stepping back for a moment, and realizing that very few simple formulae involving Stirling numbers
are new, we see that Equation (3) is really a direct application of the following theorem.

Theorem 2 (Euler’s Finite Difference Theorem [5]). Let f(z) = ag + ajz + asx? + - - - + apz” be a
complex polynomial and let n be a nonnegative integer. Then
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Our goal 1s to generalize Theorem 2 and then use that generalization for our own combinatorial
purposes. To that end, we start with the following well-known formula involving Stirling numbers of

the second kind: .
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Letting g(z) = ag + ajx + aox’ + -+, we multiply both sides of the preceding equation by a;. and
sum over all £ > 0 to obtain our desired generalization of Theorem 2:
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Results

Equation (5) 1s useful in directly generating combinatorial identities.
1. Let
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giving us Theorem 1, which was the motivating identity.

2.Let g(j) = 1, giving that ag = 1 and a;. = 0 for £ > 1. This yields the well-known alternating
binomial sum 1dentity
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where T]? denotes the signed Stirling number of the first kind. Since the lefthand side 1s equal to

0 for 0 < m < nand (—1)" when n = m, we quickly obtain the well-known orthogonality relation
between Stirling numbers of the first and second kind.

Similarly, letting g(7) = (j) Tm=7( +1)--- (7 + (m — 1)), we obtain
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which can be rewritten to yield a formula for the Lah numbers, £(m, n):
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5. Broder [1] denotes the r-Stirling numbers of the first and second kind as [n] and { " } , re-
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spectively. Z is defined to be the number of set partitions of {1,2,...,n} into k£ nonempty,
unordered parts suTch that 1,2, ..., r are in distinct parts, and thus, are all minimal elements of their
parts. The numbers Z are defined similarly for permutations of {1,2,...,n} into k disjoint

cycles. Rewriting Equatiorq (32) from [1] and then applying Theorem 1 yields
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Multiplying both sides of the Equation (6) by 2k /k! and summing over k£ > 0 gives us the following
exponential generating function of the r-Stirling numbers:
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Unlike the original proof, this does not require any knowledge of the generating functions of Stir-
ling numbers themselves.
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