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Let des(π) be the number of descents and pk(π) the number of peaks of a permutation
π. In [1], Brändén proved that for any subset Π ⊆ Sn invariant under a group action called
the modified Foata–Strehl action (abbreviated as MFS ), the descent polynomial A(Π; t) :=∑

π∈Π t
des(π) is γ-positive and is related to the peak polynomial P (Π; t) :=
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π∈Π t
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the formula
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By taking Π = Sn, this yields well-known results of Foata–Schützenberger [2] and Stembridge
[4] on Eulerian polynomials.

In this talk, we produce a refinement of Brändén’s formula: For any Π ⊆ Sn invariant
under the modified Foata–Strehl action, the descent polynomial A(Π; t) and the polyno-
mial P (Π; y, t) :=

∑
π∈Π y

pk(π)tdes(π) encoding the joint distribution of the peak number and
descent number over Π satisfy the relation
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Setting y = 1 recovers Brändén’s formula, and taking Π = Sn yields an analogous result on
Eulerian polynomials which can also be proven using noncommutative symmetric functions
(see [5]).

Several subsets Π ⊆ Sn known to be invariant under the modified Foata–Strehl action can
be characterized in terms of pattern avoidance. For example, Brändén [1] showed that the
pattern class Avn(231) is MFS-invariant, and Kim and Lin [3] showed that Avn(3142, 1342)
is also MFS-invariant. Thus, we pose the question: Can we characterize all pattern classes
invariant under the modified Foata–Strehl action? We conclude the talk with some pre-
liminary results in this direction, which is joint work with Richard Zhou (Lexington High
School).
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