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Abstract. Given a set A ⊆ Sn of m permutations of {1, 2, . . . , n} and a distance function
d, the median problem consists of finding the setM(A) of all the permutations that are the
“closest” of the m given permutations. Here, we study the automedian case of the problem,
i.e. when A = M(A), under the Kendall-τ distance which counts the number of order
disagreements between pairs of elements of permutations.

1 Introduction

The problem of finding medians of a set of m permutations of {1, 2, . . . , n} under the
Kendall-τ distance [8, 12] is often cited in the literature as the Kemeny Score Problem [7].
Giving an ordering of n political candidate by m voters, the problem consists of finding a
Kemeny consensus: an order of the candidates that agrees the most with the order of the
m voters. This problem is polynomial-time solvable for m = 2, has been proved to be NP-
complete when m ≥ 4, m even (first proved in [4], then corrected in [3]), but its complexity
remains unknown for m ≥ 3, m odd. Some approximate and fixed parameters algorithms
have been derived [1, 2, 6, 9–11, 13]. Here we investigate automedian sets of permutations
(when the sets of permutations A is equal to the set of its medians M(A)) by building on
a previously published extended abstract [5] and constructing new variants of automedian
sets of permutations using some combinatorial properties of those sets. Note that all proofs
are omitted here but will be included in the full version of this article.

2 Median of permutation

2.1 Definitions and notations

A permutation π is a bijection of [n] = {1, 2 . . . , n} onto itself. The set of all permutations
of [n] is denoted Sn. As usual we denote a permutation π of [n] as π = π1π2 . . . πn.
The identity permutation corresponds to the identity bijection of [n] and is denoted
ı = 12 . . . n. Given two permutations π and σ ∈ Sn, πσ (or π◦σ) denote the usual product
of permutations i.e. their composition as functions. Let A ⊆ Sn be a set of permutations
of [n]; we will denote its cardinality by #A.
The Kendall-τ distance, denoted dKT , counts the number of order disagreements be-
tween pairs of elements of two permutations and can be defined formally as follows:
for permutations π and σ of [n], we have that dKT (π, σ) = #{(i, j)|i < j and [(π−1i <
π−1j and σ−1i > σ−1j ) or (πi−1 > πj−1 and σ−1i < σ−1j )]}. Given any set of permutations
A ⊆ Sn and a permutation π, we have dKT (π,A) =

∑
σ∈A dKT (π, σ).

The problem of finding a median of a set of permutations A under the
Kendall-τ distance is the following. Given A ⊆ Sn, we want to find a permutation π∗
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of [n] such that dKT (π∗,A) ≤ dKT (π,A), ∀ π ∈ Sn. Finally, let us define M(A) as the
set of all medians of A i.e. M(A) = {π ∈ Sn|∀σ ∈ Sn, dKT (π,A) ≤ dKT (σ,A)}. In
this article, we are interested to investigate automedian sets of permutations i.e sets of
permutations, A, that are equal to their set of medians, M(A).

2.2 Previous work on automedian sets

In a previous extended abstract [5], we gave two special simple cases of automedian sets.
The first case (see Theorem 1) is when A is composed of a permutation and its ”circular
rotations”. The second one (see Theorem 2) is when A consist of permutations composed
of a common Sk kernel with some (or none) shared fixed points.

Theorem 1 ([5]). Let π = π1 . . . πn be a permutation of [n] and let
↑i π = πi+1 . . . πnπ1 . . . πi. If A = {↑i π | 0 ≤ i ≤ n − 1} then A = M(A) and, ∀i,
0 ≤ i ≤ n− 1, dKT (↑i π,A) = (n+1)n(n−1)

6 .

Theorem 2 ([5]). If A = {π = 1 2 . . . ` σ `+k+1 . . . n | σ is any permutation of {`+
1, . . . , ` + k}}, for any 0 ≤ ` ≤ n − 1, 1 ≤ k ≤ n, then A = M(A) and for π ∈ A,

dKT (π,A) = k(k−1)k!
4 . Note that A = Sn, is the special case when ` = 0 and k = n.

3 Group action and morphism

Let P(Sn) be the set of all subsets of Sn. Composition of permutations turns Sn into a
group and we get a left group action on P(Sn):

◦ : Sn × P(Sn) −→ P(Sn)
(π , A) 7→ π ◦ A,

by setting π ◦ A = {π ◦ σ |σ ∈ A}. We will first show two small lemmas about the
invariability of the Kendall-τ distance under this action. Note that we denote π ◦ σ by πσ
in the rest of this article.

Lemma 1. Let π, σ, ψ be permutations of Sn. Then dKT (πσ, πψ) = dKT (σ, ψ).

Lemma 2. Let A ⊆ Sn be a set of permutations and let π be any permutation of Sn.
Then, dKT (πσ, πA) = dKT (σ,A).

We now have everything in place to show the following:

Theorem 3. Let M : P(Sn) −→ P(Sn) be the function that maps a set of permutations
A ⊆ Sn to the set of its medians M(A). The function M is a morphism of action i.e.
πM(A) =M(πA).

Recall that the orbit of A under the action ◦ is the set of all σA, σ ∈ Sn. We have the
following first result on automedian sets:

Corollary 1. Let A and B be two sets of permutations of Sn in the same orbit of the
action ◦ : Sn × P(Sn)→ P(Sn). Then B =M(B) ⇐⇒ A =M(A).

4 Decomposable permutations and direct sum

Now that we have derived some basic properties of the sets of medians, let us explore
ways to built new automedian sets of decomposable permutations, using the direct sum
of already known sets. First, let us recall some definitions and set some notations.



4.1 Definitions and notations

Definition 1. A permutation π ∈ Sn will be called k-decomposable, 1 ≤ k ≤ n − 1, if
i > k ⇔ πi > k, ∀i ∈ {1, 2, . . . , n}.

Definition 2. A permutation π ∈ Sn will be called indecomposable, if it is not k-
decomposable for any k ∈ {1, 2, . . . , n− 1}.

Definition 3. A set of permutations A ⊆ Sn will be called k-decomposable, 1 ≤ k ≤
n− 1, if all of its permutations are k-decomposable.

Definition 4. Let A ⊆ Sn be a k-decomposable set, 1 ≤ k ≤ n− 1, and let π ∈ Sn be any
permutation. The set πA is called k-separable. If A is not k-separable for any k, then
it we be called inseparable.

Note that to lighten notation, if there are many strictly ascending values k1, k2... km
such that a permutation or a set of permutations is ki-decomposable (resp. ki-separable),
1 ≤ i ≤ m, we will say that it is k1; k2; ...km-decomposable (resp. k1; k2; ...km-separable).

Example 1. Let π = 32145, then π is 3;4-decomposable. Let σ = 54321, then σ is inde-
composable.

Definition 5. Let π ∈ Sk and σ ∈ S` be two permutations of length k and `, respectively.
The direct sum of π and σ, denoted π ⊕ σ, is the permutation of length k + ` defined as
π ⊕ σ = π1π2...πk(σ1 + k)(σ2 + k)...(σ` + k).

Example 2. Let π = 132 and σ = 2143, then π ⊕ σ = 1325476.

Note: A permutation π ∈ Sn that is k1, k2... km-decomposable can be written as the
direct sum of m+ 1 indecomposable permutations of length ki − ki−1, for 1 ≤ i ≤ m+ 1,
with k0 = 0 and km+1 = n.

Example 3. The permutation π = 32145 ∈ S5 is 3; 4-decomposable. It can be written as
π = 321⊕ 1⊕ 1, where 321 ∈ S3 and 1 ∈ S1 are indecomposable permutations.

We can extend the definition of direct sum to sets of permutations in the following way:

Definition 6. Let A ⊆ Sk and B ⊆ S` be two sets of permutations of length k and `,
respectively. The direct sum of A and B, denoted A⊕B, is defined as A⊕B = {π⊕σ | π ∈
A and σ ∈ B}.

Note that by definition, A⊕ B is k-decomposable.

Example 4. LetA = {132, 312} and B = {2143, 2314, 2431}. ThenA⊕B is 3-decomposable
and A ⊕ B = {1325476, 1325647, 1325764, 3125476, 3125647, 3125764}. Let π = 3271653,
then π(A⊕ B) = {3726145, 3726451, 3726514, 7326145, 7326451, 7326514} is 3-separable.

It is easy to show that the direct sum ⊕ is an associative operation and so we have, for
any permutations π, σ and φ, that (π ⊕ σ) ⊕ φ = π ⊕ (σ ⊕ φ). This associativity easily
extends to the direct sums of sets of permutations.



4.2 Theorems and properties

Let us first show this easy result about the Kendall-τ distance of permutations that are
direct sums of smaller permutations.

Lemma 3. Giving ρ and ψ, two permutations of Sk, φ and θ, two permutations of S`, let
π and σ be the two permutations of Sn, n = k + `, such that π = ρ ⊕ φ and σ = ψ ⊕ θ.
Then, dKT (π, σ) = dKT (ρ, ψ) + dKT (φ, θ).

Now, let us explore some properties connecting the direct sums of sets of permutations
and the median of those sets.

Theorem 4. Let A ⊆ Sk and B ⊆ S`, k + ` = n, be two sets of permutations. Then,
M(A⊕ B) =M(A)⊕M(B).

We can use Theorem 4 and the next Lemma to obtain new automedian sets by taking the
direct sums of already known ones. This implies that automedian sets of permutations are
closed under the operation direct sum.

Lemma 4. Let A, C ⊆ Sk and B,D ⊆ S` be four sets of permutations. If A⊕B = C ⊕D,
then A = C and B = D.

Corollary 2. Let A ⊆ Sk and B ⊆ S` be two sets of permutations. Then A =M(A) and
B =M(B) ⇐⇒ A⊕B =M(A⊕ B)

Now, we have everything in place to show that any k-decomposable automedian set of
permutations comes from the direct sums of automedian sets of smaller permutations.

Theorem 5. Let C ⊂ Sn be a k-decomposable automedian set. Then there exist autome-
dian sets of permutations A ⊆ Sk and B ⊆ S`, k + ` = n, such that A⊕ B = C.

Corollary 3. Let C ⊂ Sn be a k-separable automedian set. Then there exist π ∈ Sn and
automedian sets of permutations A ⊆ Sk and B ⊆ S`, k + ` = n, such that π(A⊕ B) = C.

Lemma 5. Let C ⊂ Sn be a k1; k2; . . . ; km-decomposable automedian set. Then there exist
automedian sets of permutations A1 ⊆ Sk1, A2 ⊆ Sk2−k1, . . ., Am ⊆ Skm−km−1, Am+1 ⊆
Sn−km, such that A1 ⊕A2 ⊕ . . .⊕Am ⊕Am+1 = C.

Corollary 4. Let C ⊂ Sn be a k1; k2; . . . ; km-separable automedian set. Then there exist
π ∈ Sn and automedian sets of permutations A1 ⊆ Sk1, A2 ⊆ Sk2−k1, . . ., Am ⊆ Skm−km−1,
Am+1 ⊆ Sn−km, such that π(A1 ⊕A2 ⊕ . . .⊕Am ⊕Am+1) = C.

4.3 Counting automedian sets

Corollary 4 shows us that any separable automedian set of permutations ⊆ Sn can be
written as a composition of a permutation π ∈ Sn with the direct sum of inseparable
automedian sets. It follows that to solve the problem of finding all automedian sets of
permutations of Sn, we only need to find inseparable ones because we can get all the
others by combining smaller inseparable sets. To count all the automedian sets of Sn, let
AMn be the set of all automedian sets of Sn, i.e. AMn = {A =M(A) | A ⊆ Sn} and let
In be the set of all inseparable ones, i.e., In = {A =M(A) | A ⊆ Sn and A inseparable}.



Now, an automedian set of permutations A ⊆ Sn is either inseparable, and there are
#In of those sets or it is separable. In that case, let i, 1 ≤ i ≤ n − 1 be the smallest
value for which A is i-separable. Everything we have built so far gives us that #AMn =
#In +

∑n−1
i=1

(
n
i

)
×#Ii ×#AMn−i, where the

(
n
i

)
in the formula counts the number of

ways to pick the i elements among n that are in the inseparable part of A. We still do not
know how to generate all inseparable automedian sets but we did count them for small n
and got the following values of #AMn and #In:

n #In #AMn

1 1 1

2 1 3

3 3 15

4 27 117

5 ≥ 429 ≥ 1389

6 ≥ 8889 ≥ 23667

5 Conclusion and future works
The median problem has been essentially studied for the permutation group Sn and under
the Kendall-τ distance. From a combinatorial point of view, it would be very interesting
to generalize the median problem to the signed permutations group Bn, as well as to other
Coxeter groups which are known to behave in similar manner to these two groups for a
large number of combinatorial questions.
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