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1 Introduction

An inversion sequence is an integer sequence (e1, . . . , en) satisfying 0 ≤ ei < i for all i = 1, . . . , n.
There is a natural bijection Θ : Sn → In from Sn, the set of permutations of length n, to In,
the set of inversion sequences of length n. Under this bijection, e = Θ(π) is obtained from a
permutation π = π1 . . . πn ∈ Sn by setting ei = |{j : j < i and πj > πi}|. The study of patterns
in inversion sequences was introduced in [9] and [13]. In [9] the authors study inversion sequences
that avoid words of length 3, while in [13] inversion sequences avoiding permutations of length
3 are considered. For instance, the inversion sequences that avoid the pattern 110 are those
with no i < j < k such that ei = ej > ek. This study has been carried on in [14], where the
notion of pattern avoidance is generalized to a triple of binary relations (ρ1, ρ2, ρ3) and study the
set In(ρ1, ρ2, ρ3) of those e ∈ In with no i < j < k such that eiρ1ej , ejρ2ek, and eiρ3ek. For
example In(=, >,>) = In(110). In [14] all triples of relations of the set {<,>,≤,≥,=, 6=,−}3 are
studied, where − on a set S is the cartesian product, i.e. − = S×S. Therefore all 343 patterns are
considered and partitioned in 98 equivalence classes. In [14] the authors found several enumeration
results beyond those in [9, 13], and formulated several conjectures, some of which are studied in
this paper.

Generating trees and succession rules will also be important for our work. We give a brief
general presentation below. Details can be found for instance in [1, 2, 3, 16]. We also review the
classical generating tree for Dyck paths and the classical succession rule for Catalan numbers.

Consider any combinatorial class C, that is to say any set of discrete objects equipped with a
notion of size, such that there is a finite number of objects of size n for any integer n. Assume
also that C contains exactly one object of size 1. A generating tree for C is an infinite rooted
tree, whose vertices are the objects of C, each appearing exactly once in the tree, and such that
objects of size n are at distance n from the root (with the convention that the root is at distance
1 from itself). The children of some object c ∈ C are obtained by adding an atom (i.e. a piece of
object that makes its size increase by 1) to c. Of course, since every object should appear only
once in the tree, not all additions are possible. We should ensure the unique appearance property
by considering only additions that follow some restricted rules. We will call the growth of C the
process of adding atoms following these prescribed rules.

Such a growth for Dyck paths is described in [2]. Recall that a Dyck path of semilength n
is a lattice path using up U and down D unit steps and running from (0, 0) to (2n, 0) remaining
weakly above the x-axis. The atoms are peaks, that is to say UD factors. To ensure that all Dyck
paths appear exactly once in the generating tree, peaks are inserted in the last descent of the path,
which is the longest suffix containing only the letter D. More precisely, the children of a Dyck
path w ·UDk are w ·UUDDk, w ·UDUDDk−1, . . . , w ·UDk−1UDD and w ·UDkUD. The first
few levels of the generating tree for Dyck paths are shown in Figure 1 (left).

Since the growth of C uniquely defines the shape of the generating tree, for enumerative purpose
we choose to identify a generating tree with its shape without regarding the objects that label its
nodes. If such growth is particularly regular, we can represent it via a succession rule. A succession
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Figure 1: Two ways of looking at the generating tree for Dyck paths: with objects (left) and with
labels from the succession rule ΩCat (right).

rule is made of one starting label corresponding to the label of the root and of productions encoding
the way labels spread in the generating tree. As we explain in [6], the sequence enumerating the
class C can be recovered from the succession rule itself, without reference to the specifics of the
objects in C: indeed, the nth term of the sequence is the total number of labels (counted with
repetition) that are produced from the root by n−1 applications of the productions, or equivalently,
the number of nodes at distance n from the root in the generating tree.

From the growth of Dyck paths described above, we classically obtain the following succession
rule associated with Catalan numbers (corresponding to the tree shown in Figure 1, right):

ΩCat =

{
(1)
(k) (1), (2), . . . , (k), (k + 1).

The intended meaning of the label (k) is the number of D steps in the last descent of a path.
The class of Dyck paths is just one of many families of discrete objects counted by the Catalan

numbers (sequence A000108 in [12]).

2 A hierarchy of inversion sequences

In this paper we consider a hierarchy of families of inversion sequences ordered by inclusion ac-
cording to the following scheme:

I (100,210)

n

nI (100,110,210)

I (100,210)n

nI (110,210)

nI (110)

nI (100,210)

sequence

Semi-Baxter 

Semi-Baxter 

sequence

sequence A113227

sequence A108307 

Bell sequence

nI (000,100,110,210)

I (000,100,101,110,201,210)n

Catalan sequence

nI (100,110,201,210)

Schroder sequence

Baxter sequence

n

I (000,110)

Figure 2: The families of inversion sequences considered in the paper, ordered by inclusion.

The aim of this paper is to handle all these families in a unified way by providing, for each
of them: a (possible) combinatorial characterization; a recursive growth by means of generating
trees; enumeration; possible connections with other combinatorial structures. In most of these
cases we prove enumerative results conjectured in [14].

The recursive construction (and the generating tree) of any family in the scheme of Fig. 2 is
obtained as an extension of the construction (and the generating tree) of a smaller one, starting
from the family In(≥,−,≥) defining Catalan numbers. We also point out that our paper provides
a natural instance of the inclusion “Catalan in Schröder in Baxter in semi-Baxter”. As pointed
out in [6, 7] these inclusions are obvious on pattern-avoiding permutations, but they remain quite
obscure on other objects.
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2.1 In(000, 100, 101, 110, 201, 210): Catalan sequence.

We start considering the family ICn = In(≥,−,≥) = In(000, 100, 101, 110, 201, 210). These inver-
sion sequences can be characterized as follows: a sequence (e1 . . . en) ∈ ICn if and only if for any i
we have: if ei+1 < ei then ej > ei for all j > i+ 1. Our main results concern:

1. |ICn | = cn, i.e. the nth Catalan number, as conjectured in [14], by providing a recursive
growth of the family according to ΩCat.

2. a bijectiion between ICn and non crossing partitions of size n, which are a well known Catalan
structure.

3. a recursive growth of ICn according to the generating tree:

ΩCat′ =

 (1, 1)
(h, k) (0, k + 1)h

(h+ k, 1), . . . , (h+ 1, k).

This is a new generating tree for Catalan numbers. Observe that we need not prove it since
it is implied by the above steps. All the families in our scheme (unless otherwise specified)
have a grow which extends the one provided by ΩCat′ .

4. the proof that ICat
n is just the set of inversion sequences of AVn(12-3, 2-14-3), which therefore

turns out to be another family of permutations counted by Catalan numbers.

2.2 In(100, 110, 201, 210): Schröder sequence

Let ISn = In(≥,−, >) = In(100, 110, 201, 210). These inversion sequences can be characterized as
follows: for every i, j with i < j such that ei ≥ ej , for all k > j we have ek ≥ ei. In [14] is
proved that ISn = sn, i.e. the nth Schröder number (sequence A006318 in [12]) by a standard
decomposition technique. We prove that ISn grow according to

ΩSc =

 (1, 1)
(h, k)  (1, k + 1)h

(h+ 1, k), . . . , (h+ k, 1) ,

which is a clear extension of ΩCat′ . Observe that this is a new generating tree for Schröder numbers,
different from the ones given in [2, 6, 16].

2.3 In(000, 100, 110, 210): sequence A108307

Let IAn = In(≥,≥,≥) = In(000, 100, 110, 210). These inversion sequences can be characterized as
follows: for any three indices i < j < k, if ei ≤ ej , then ek > ej . This implies that every such
inversion sequence can be uniquely decomposed in two strictly increasing sequences. For instance,
0113236567 ∈ IA10 and taking its left-to-right maxima it can be decomposed in 01367 and 12356,
which are strictly increasing sequences. We prove that IAn grows according to

ΩA =

 (1, 1)
(h, k)  (0, k + 1), . . . , (h− 1, k + 1)

(h+ 1, k), . . . , (h+ k, 1) ,

which is also a clear extension of ΩCat′ . Using standard techniques, from ΩA we obtain a functional
equation satisfied by the generating function of IA. Applying some variants of the kernel method
and then the Lagrange inversion formula we have proved that the numbers bn = IAn have a D-finite
generating function and satisfy the following polynomial recurrence relation:

8(n+ 3)(n+ 2)(n+ 1) bn + (n+ 2)(15n2 + 133n+ 280) bn+1 + (92n2 + 6n3 + 464n+ 776) bn+2

− (n+ 9)(n+ 8)(n+ 6) bn+3 = 0 .
(1)
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In [14] the authors conjecture that {bn}n≥0 is sequence A108307 in [12]. This sequence counts,
among the others:

1. partitions avoiding enhanced 3-crossings. These objects have been studied in [5], where the
authors proved that their generating function is D-finite and determined a recursive formula
for the numbers an of partitions avoiding enhanced 3-crossings of size n:

8(n+ 3)(n+ 2)(n+ 1)an + 3(n+ 2)(5n2 + 47n+ 104)an+1 + 3(n+ 4)(2n+ 11)(n+ 7)an+2

− (n+ 9)(n+ 8)(n+ 7)an+3 = 0.
(2)

2. inversion sequences defined as follows: e0 = 0, 0 ≤ e1 ≤ 1, en ≤ max{en−1, en−2}+ 1.

Using standard techniques on the two recurrence relations (1) and (2) we have been able to prove
that an = bn for all n ≥ 1, thus proving the conjecture in [14].

2.4 In(100, 110, 210): Baxter sequence

Let IBn = In(≥,≥, >) = In(100, 110, 210). These inversion sequences can be characterized as
follows: for any three indices i, j with i < j such that ei ≥ ej , for any k > j we have ek > ej or
ek ≥ ei. We prove that IBn grows according to

ΩBax =

 (1, 1)
(h, k)  (1, k + 1), . . . , (h− 1, k + 1), (1, k + 1)

(h+ 1, k), . . . , (h+ k, 1) .

In [14] it is conjectured that IBn is counted by Baxter numbers (sequence A001181 in [12]). The
generating tree ΩBax is not known in the literature, so in order to prove this conjecture we
have solved the functional equation arising from ΩBax, applying the kernel method and then the
Lagrange inversion formula. Then we have obtained a formula for the cardinality of IBn :

2
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but we have not been able to prove that this formula gives Baxter numbers, although we have
checked that the two sequences coincide for a huge amount of terms. On the other side, we have
not been able to find a growth of a Baxter object (as, for instance, Baxter permutations or Baxter
slicings [6]) according to ΩBax.

2.5 In(110, 210): Semi-Baxter sequence

Here we consider the inversion sequences In(≥, >,>) = In(110, 210) and In(>,≥, >) = In(100, 210),
which in [14] are both conjectured to be counted by the sequence of semi-Baxter numbers (sequence
A117106 in [12]).

We prove this conjecture by using a family of permutations counted by sequence A117106,
called semi-Baxter permutations [7] and defined by the avoidance of the pattern 2-41-3 (recall
that Baxter permutations are defined by the avoidance of the same pattern, and 3-14-2). In [7]
the problem of enumerating semi-Baxter permutations is solved, pushing further the techniques
that were used to enumerate Baxter permutations in [3]. A generating tree with two labels for
semi-Baxter permutations was provided,

ΩSemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h+ k, 1), . . . , (h+ 1, k).
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Then, the functional equation associated with it was solved using variants of the kernel method [3],
leading to the proof that the n-th semi-Baxter number sbn satisfies a simple recurrence formula,
where sb0 = 1, sb1 = 1, and for all n ≥ 2,

sbn =
11n2 + 11n− 6

(n+ 4)(n+ 3)
sbn−1 +

(n− 3)(n− 2)

(n+ 4)(n+ 3)
sbn−2.

Recall that semi-Baxter numbers count also 2-14-3-avoiding permutations (plane permutations),
introduced in [4], whose growth is governed by the rule ΩSemi.

Here, we prove that both In(110, 210) and In(100, 210) grow according to ΩSemi thus proving
that they are counted by semi-Baxter numbers, as conjectured in [14]. Observe that ΩSemi extends
ΩBax.

2.6 In(000, 110): Bell sequence

It is worth spending a few words on In(000, 110), which is conjectured to be enumerated by Bell
numbers [14], as well as set partitions of size n. We provide a proof of this fact by showing that
In(000, 110) grows according to the known generating tree

ΩB =

{
(2)
(h) (h)h−1(h+ 1)

defining Bell numbers (see, for instance [1]). Relying on this growth, we build up a direct bijection
between inversion sequences of In(000, 110) and set partitions of size n, which extends the bijection
(in Section 2.1) between ICn and non-crossing partitions of size n. Unfortunately the construction
given by ΩB is not an extension of Ωsemi.

2.7 In(110): sequence A113227

We consider ILn = In(110) = In(=, >,>). These sequences can be characterized as those inversion
sequences such that, with i > 1, ei satisfies: ei > Max(e1 . . . ei−1) or ei ≥ Max2(e1 . . . ei−1),
where Max2(e1 . . . ei) = Max{ej1 |∃j2 6= j1, ej1 = ej2}.

In [9] the authors prove that the number pn = |ILn | can be expressed as pn =
∑

j pn,j , where
the terms pn,j satisfy the recurrence relation{

p1,1 = 1,

pn,j = pn−1,j−1 + j
∑n−1

i=j pn−1,i .
(3)

Thus, {pn}n≥0 is sequence A113227 in [12]. This sequence has been studied by D. Callan in [8],
and it is proved to count several families of objects, such as marked valleys Dyck paths, increasing
ordered trees with increasing leaves or permutations avoiding the generalized pattern 1-23-4.

In this paper we prove that ILn grows according to the generating tree:

ΩL =

{
(2)
(h) (1)(2)2 . . . (h)h(h+ 1)

which is a clear extension of ΩCat, but is not related to the other considered generating trees. We
also prove that sequence A113227 counts a family of lattice paths (called steady paths) which extend
Dyck paths and are easily bijective to permutations avoiding 1-34-2. Moreover, we determine a
recursive growth of these paths according to the rule

ΩL′ =

 (0, 2)
(h, k)  (0, k + 1), . . . , (0, h+ k + 1)

(h+ k − 1, 2), . . . , (h+ 1, k) .

Unfortunately we have not been able to find a bijection between these steady paths (or permuta-
tions avoiding 1-34-2) and ILn , nor to determine a recursive growth of ILn according to ΩL′ .
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