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1. Introduction

Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}, which we will always write as words,
w = w(1)w(2) · · ·w(n). A peak is a descent that is preceded by an ascent, and the peak set of a
permutation w, denoted Pk(w), is the collection of its peaks,

Pk(w) = {i : w(i− 1) < w(i) > w(i + 1)}.

Any subset of {1, 2, . . . , n−1} is the descent set of some permutation in Sn, but the same cannot be
said for peak sets. For example, peaks cannot occur in the first or last positions of a permutation,
so Pk(w) ⊆ {2, . . . , n − 1} for any w ∈ Sn. Recently Billey, Burdzy, and Sagan [1] asked about
how many permutations in Sn have a given peak set. One of their results is that for a fixed set S,
the number of w ∈ Sn for which Pk(w) = S is a power of two times a polynomial in n, and they
give techniques for explicit computation of this polynomial in special cases. In this abstract, we
will study questions related to peaks, but rather than tracking peaks by their indices, we use their
values.

Definition 1.1. A pinnacle of a permutation w is a value w(i) such that w(i−1) < w(i) > w(i+1).
The pinnacle set of w is

Pin(w) = {w(i) : i ∈ Pk(w)}.

Certainly |Pk(w)| = |Pin(w)|, but the sets themselves need not be the same: if w = 315264,
then Pk(w) = {3, 5} and Pin(w) = {5, 6}. The introduction of pinnacle sets lead to questions about
the value

pS(n) := |{w ∈ Sn : Pin(w) = S}|.

We remark that descent topsets, which are defined similarly to but are distinct from pinnacle
sets, and related ideas have appeared sporadically in the literature on permutation statistics, e.g.,
see [2, 3, 4, 5, 6, 7]. The question of enumeration by pinnacle sets does not appear to have been
addressed in the literature.

The questions we address are the following.

1. When is pS(n) > 0? That is, when is a set S the pinnacle set of some permutation in Sn?
2. Given a pinnacle set S ⊆ [n], how do we compute pS(n)?
3. For a given n, what choice of S ⊆ [n] maximizes or minimizes pS(n)?

In Section 2 we identify conditions under which a set S is the pinnacle set for some permutation,
fully answering Question 1. In Section 3 we develop both a quadratic and a linear recurrence
for pS(n), which partially answers Question 2. Further, we identify bounds for pS(n), answering
Question 3.
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2. Admissible pinnacle sets

Not every set is the peak set of a permutation. Likewise, not every set is a pinnacle set. For one
thing, each peak must have a non-peak on each side of it, so the number of peaks must be strictly
less than half the number of letters in the permutation, hence n > 2|Pk(w)| = 2|Pin(w)|. Our goal
in this section is to push this result a bit further and to completely characterize pinnacle sets.

Definition 2.1. A set S is an n-admissible pinnacle set if there exists a permutation w ∈ Sn such
that Pin(w) = S. If S is n-admissible for some n, then we simply say that S is admissible.

Pinnacle sets are stable in the sense that if S is an n-admissible pinnacle set, then S is also (n+1)-
admissible. Indeed, if Pin(w) = S for w ∈ Sn, u = (n+1)w(1) · · ·w(n), and v = w(1) · · ·w(n)(n+1),
then

Pin(u) = Pin(v) = Pin(w).

Moreover, any other way to insert n+1 into w will give a different pinnacle set, since n+1 would sit
at a peak. Thus a kind of converse to this stability observation is the observation that if maxS = m,
and S is an n-admissible pinnacle set for some n ≥ m, then S is m-admissible. Extending this idea
leads to the first half of the following result, characterizing admissible pinnacle sets.

Theorem 2.2 (Admissible pinnacle sets). Let set S be a set of integers with maxS = m. Then S
is an admissible pinnacle set if and only if both

1. S \ {m} is an admissible pinnacle set, and
2. m > 2|S|.

Moreover, there are
(
m−2
bm/2c

)
admissible pinnacle sets with maximum m, and

1 +

n∑
m=3

(
m− 2

bm/2c

)
=

(
n− 1

b(n− 1)/2c

)
,

admissible pinnacle sets S ⊆ [n].

This characterization is in contrast to the characterization of peak sets. Whereas the number of
peak sets is given by the Fibonacci numbers, here we get a central binomial coefficient. We now
use this characterization of admissible pinnacle sets to count how many there are.

Definition 2.3. Given nonnegative integers m and d, define p(m; d) to be the number of admissible
pinnacle sets with maximum element m and cardinality d, using the convention p(0; 0) = 1.

The following recurrence follows from the first half of Theorem 2.2:

p(m; d) =


1 if m = d = 0,∑

k<m

p(k; d− 1) if m > 2d, and

0 otherwise.

The simplicity of the second half of Theorem 2.2 suggests a nice combinatorial explanation for
the number of admissible pinnacle sets. Another nudge toward this combinatorial structure comes
when we recognize that the numbers p(m; d) satisfy a two-term recurrence for m− 1 > 2d :

p(m; d) =
∑
k<m

p(k; d− 1),

= p(m− 1; d− 1) +
∑

k<m−1
p(k; d− 1),

= p(m− 1; d− 1) + p(m− 1; d− 1).
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The boundary cases for this recurrence are Catalan numbers, that is,

p(2d + 1; d) = Cd

for d ≥ 1, where Cd =
(
2d
d

)
/(d + 1). This hints at a connection between admissible pinnacle sets

and lattice paths. We omit the discussion of this connection in the interest of space, but note here
that this connection is critical in establishing the second half of Theorem 2.2.

3. Recurrences, explicit formulas, and bounds for pS(n)

Now that we have characterized and enumerated admissible pinnacle sets, we turn to the question
of counting permutations with a given pinnacle set.

To begin our study of pS(n), we make the easy observation that there are 2n−1 permutations in
Sn having no peaks; that is, p∅(n) = 2n−1. Indeed, if Pin(w) = ∅, then we can write w = u1v, a
concatenation of strings, where u is a word whose letters are strictly decreasing and v is a word
whose letters are strictly increasing. If w ∈ Sn, then each such permutation is determined by the
elements of u, which can be any subset of the (n−1)-element set {2, 3, . . . , n}. We will now analyze
the number of ways to perform this procedure.

Definition 3.1. The standardization map relative to a set X = {x1 < x2 < · · · } is

stdX(xi) = i.

Fix a nonempty set A = {a1 < a2 < · · · < a|A|} ( [n− 1], and let

I = stdA(S) = {i : ai ∈ S}.

In other words, I is the set of relative values of pinnacles within the subset A.
With this notation, the number of permutations u of a set A such that Pin(u) = S′ equals the

number of permutations in S|A| with pinnacle set I. That is, the number of such u is pI(|A|).
Likewise, letting J = stdAc(S) denote the set of relative values of the pinnacles of within Ac, we
have pJ(|Ac|) = pJ(n− 1− |A|) ways to form the permutation v.

Running over all cases of the set A, we get the following result.

Proposition 3.2 (A quadratic recurrence). If S is an admissible pinnacle set with maxS = n,
then

(1) pS(n) =
∑

∅6=A([n−1]

pstdA(S)(|A|) · pstdAc (S)(n− 1− |A|).

While it may seem that the quadratic recurrence must sum over 2n−1 − 2 subsets A, note that
many of these selections contribute zero to the sum, because both stdA(S) and stdAc(S) must
themselves be admissible pinnacle sets. For example, with the set S = {4, 7, 9}, only 44 of the
possible 28 − 2 = 254 summands in Equation (1) are nonzero.

We can obtain explicit formulas for pinnacle sets with one or two elements.

Proposition 3.3. Let 3 ≤ l < m. For any n ≥ l,

p{l}(n) = 2n−2(2l−2 − 1)

and for any n ≥ m,

p{l,m}(n) = 2n+m−l−5
(

3l−1 − 2l + 1
)
− 2n−3(2l−2 − 1).

There may also be other special cases of explicit formulas that one can deduce from the quadratic
recurrence, by exploring precisely which nonzero terms appear in the sum. For now, though, we
turn to another recursive approach.
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Proposition 3.4 (A linear recurrence). Suppose that S is an admissible pinnacle set with |S| = d
and maxS = m. Then for any n ≥ m,

(2) pS(n) = 2n−m

(m− 2d)pS\{m}(m− 1) + 2
∑

T=(S\{m})∪{j}
j∈[m]\S

pT (m− 1)

 .

This linear recurrence tends to be very efficient in practice. It can also be used to yield explicit
formulas when desired.

Proposition 3.5 (Enumerating permutations with maximal pinnacles). Let d and n be any positive
integers such that 2d < n. The number of permutations in Sn with pinnacle set [n − d + 1, n] =
{n− d + 1, n− d + 2, . . . , n} is

(3) p[n−d+1,n](n) = d! · (d + 1)! · 2n−2d−1 · S(n− d, d + 1)

where S(·, ·) denotes the Stirling number of the second kind. Moreover, for any admissible pinnacle
set S ⊆ [n] with |S| = d, we have

pS(n) ≤ p[n+1−d,n](n).

It follows that a uniform upper bound over all S is achieved for the particular value of d = |S|
that maximizes the rightmost expression in Equation (3). While this choice of d appears to be a
little less than n/3, we have no simple expression for d in terms of n.

Next we will state a result for minimizing pS(n) for a given size of admissible pinnacle set.

Proposition 3.6 (Enumerating permutations with minimal pinnacles). Let d and n be any positive
integers such that 2d < n, and set

Md := {2k + 1 : k = 1, . . . , d}.
Then the number of permutations in Sn with pinnacle set Md is

pMd
(n) = 2n−d−1.

One could prove Proposition 3.6 by explicitly constructing such a permutation. For, if w ∈ S2d+1

has Pin(w) = {3, 5, . . . , 2d + 1}, then w has a simple structure: either w = (2d)(2d + 1)w′ or
w = w′(2d + 1)(2d), where w′ has Pin(w′) = Md−1. This choice of two options at each of d steps
gives rise to 2d such permutations.

If w ∈ Sn has Pin(w) = Md, with n > 2d + 1, then any numbers larger than 2d + 1 have the
choice of going on the far left or far right of the permutation. That is, w = uw′v, where w′ ∈ S2d+1

has Pin(w′) = Md, the elements of u are decreasing, and the elements of v are increasing. This
structure helps to prove the following result.

Proposition 3.7 (Lower bounds). Let d and n be any positive integers such that 2d < n. Then
for any admissible pinnacle set S ⊆ [n] with |S| = d, we have

pS(n) ≥ pMd
(n) = 2n−d−1.

Putting this together with our previous propositions results in the following theorem.

Theorem 3.8 (Bounds on pS(n)). Let d and n be any positive integers such that 2d < n. Then
for any admissible pinnacle set S ⊆ [n] such that |S| = d, we have the following sharp bounds:

2n−d−1 ≤ pS(n) ≤ d! · (d + 1)! · 2n−2d−1 · S(n− d, d + 1).

The results in this section allow us to find admissible pinnacle sets S that maximize and minimize
pS(n), for fixed n. For the lower bound, we have

min{pS(n) : admissible S ⊆ [n]} = min{2n−d−1 : d < n/2} = 2bn/2c.
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For the upper bound, we have something a little less satisfying:

max{pS(n) : admissible S ⊆ [n]} = max{d!(d + 1)!2n−2d−1S(n− d, d + 1) : d < n/2}.
This introduces an interesting statistic.

Definition 3.9. For fixed n, let d(n) = d < n/2 be the value maximizing the expression d!(d +
1)!2n−2d−1S(n− d, d + 1).

Initially, this d(n) appears to be a step function that increases by one as n increases by three.
But d(16) = 4 shows that this is false. Data initially suggests that the step function cycles through
seven plateaus of width three and an eighth plateau of width four, but this pattern also does not
persist. For example, d(n) = 12 for the four consecutive values from n = 38 to n = 41 and d(n) = 20
for the four consecutive values from n = 63 to n = 66. But the next plateau of four is only seven
steps away: d(n) = 27 from n = 85 to n = 88.

In Table 1 we list the values of n and d(n) for which there are four consecutive values n with
the same d(n), i.e., for which {d(n), d(n + 1), d(n + 2), d(n + 3)} is a set of size 1. All other values
of d(n) that we have observed so far (n ≤ 200) come in runs of three. The fact that the plateaus
of size four are not quite periodic is puzzling. While it seems that d(n) is approximately n/3, an
exact formula for d(n) (and hence the maximal value for pS(n)) is so far elusive.

n 13 38 63 85 110 135 160 185

d(n) 4 12 20 27 35 43 51 59

Table 1. The values of n ≤ 200 and corresponding d(n) that mark the beginnings
of four consecutive equal values: d(n) = d(n + 1) = d(n + 2) = d(n + 3).
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