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1. INTRODUCTION

A Mahonian d-function is a Mahonian statistic that can be expressed as a linear combination of vincular
pattern statistics of length at most d. Babson and Steingrimsson [2] classified all Mahonian 3-functions up
to trivial bijections (see Table 1) and identified many of them with well-known Mahonian statistics in the
literature. In [1] we prove a host of Mahonian 3-function equidistributions over pattern avoiding sets of
permutations. These are equidistributions of the form

Z qstatl(o) _ Z qstatg(a) (11)

o€Av, (m1) oEAvV, (T2)

where 71, 2 are permutation patterns and stat, staty are (Mahonian) permutation statistics. When stat; =
state such equidistributions coincide with the concept of st- Wilf equivalence coined by Sagan and Savage
[15] and further studied in e.g. [7, 12, 8, 9, 5].

Although Mahonian statistics are equidistributed over S,,, they need not be equidistributed over pattern
avoiding sets of permutations. For instance maj and inv are not equidistributed over Av,, () for any classical
pattern 7 of length three. Neither do the existing bijections in the literature for proving Mahonity necessarily
restrict to bijections over Av, (7). Therefore whenever such an equidistribution is present, we must usually
seek a new bijection which simultaneously preserves statistic and pattern avoidance. Another motivation

for studying equidistributions over Av,(7) comes from the well-known fact that |Av,(7)] = C, for all
m € S where C,, = %_‘_1(2:) is the nth Catalan number. Therefore equidistributions of this kind induce

equidistributions between statistics on other Catalan objects (and vice versa) whenever we have bijections
where the statistics translate in an appropriate fashion. We prove several results in this vein where an
exchange between statistics on Av,(7), Dyck paths and polyominoes takes place. In general, studying
the generating function (1.1) provides a rich source of interesting g-analogues to well-known sequences
enumerated by pattern avoidance and raises new questions about the coefficients of such polynomials.

2. MAIN RESULTS

The equidistributions we mention below are shown using standard tools such as block decomposition, Dyck
paths and generating functions. Our first result below may seem unexpected given that vincular patterns
do not behave as straightforwardly under inverse as they do under complement and reverse.

Proposition 2.1. Let 0 € Av,(w) where m € {132, 213, 231, 312}. Then

mak(c) = imaj(o).



2 NIMA AMINI

Name  Vincular pattern statistic Reference

maj (132) + (231) + (321) + (21) MacMahon [14]

inv  (231) + (312) 4+ (321) + (21) MacMahon [14]

mak  (132) + (312) + (321) + (21) Foata-Zeilberger [11]
makl (132) 4+ (231) + (321) + (21) Clarke-Steingrimsson-Zeng [6]
mad  (231) + (231) + (312) + (21) Clarke-Steingrimsson-Zeng [6]
bast  (132) + (213) + (321) + (21) Babson-Steingrimsson|[2]
bast’  (132) + (312) + (321) + (21) Babson-Steingrimsson|[2]
bast” (132) + (312) + (321) + (21) Babson-Steingrimsson|[2]
foze  (213) + (321) + (132) + (21) Foata-Zeilberger [10]
foze’  (132) + (231) + (231) + (21) Foata-Zeilberger [10]
foze” (231) + (312) 4 (312) + (21) Foata-Zeilberger [10]

sist  (132) + (132) + (213) + (21) Simion-Stanton [15]

sist/  (132) + (132) + (231) + (21) Simion-Stanton [15]
sist”  (132) 4 (231) + (231) + (21) Simion-Stanton [15]

TABLE 1. Mahonian 3-functions.
Moreover for anyn > 1,
T o) = 3T gmak(e)desto),
o€ Avy, () oc€Av, (1)
Remark 2.2. By Proposition 2.1 and [17, Corollary 4.1] it follows that
T gelo)tma(a) ; +1 3 F:] (2.1)
o€Av,(231) q q

The right hand side of (2.1) is known as MacMahon’s g-analogue of the Catalan numbers. In [7] it was
moreover shown that 3., (531 ¢ = C,(q) where C,(q) = ZZ;; ¢"Cr(q)Cr_r_1(q) and Cy(q) = 1.

The polynomial C’n(q) is closely related to Carlitz-Riordan’s g-analogue of the Catalan numbers.

The set of descent bottoms and descent tops of o € S,, are given by DB(c) = {o(i + 1) : i € Des(o)} and
DT (o) = {o(i) : i € Des(o)} respectively. Similarly the set of ascent bottoms and ascent tops of o € S,, are
given by AB(0) = {o(i) : ¢ € Asc(o)} and AT (o) = {o(i + 1) : i € Asc(o)} respectively.

Theorem 2.3. For anyn > 1,

Z qmaj(o)XDB(U)yDT(U) — Z qmak(a')XDB(a)yDT(U),
oc€Av,(321) o€ Av,(321)

Z qmaj(a)XAB(a)yAT(a) — Z qmak(J)XAB(o)yAT(a).
o€ Av, (123) o€ Av, (123)

The bijection used to prove Theorem 2.3 induces an interesting equidistribution on shortened polyominoes.
A shortened polyomino is a pair (P,Q) of N (north), E (east) lattice paths P = (P;)I; and Q = (@),
satisfying



(i) P and @ begin at the same vertex and end at the same vertex.
(ii) P stays weakly above @) and the two paths can share E-steps but not N-steps.

Denote the set of shortened polyominoes with |P| = |Q| = n by H,,. For (P,Q) € H,, let Projg(i) denote
the step j € [n] of P that is the projection of the i'" step of Q on P. Let

Valley(Q) = {Z : QiQH—l = EN}
denote the set of indices of the valleys in @ and let nval(Q) = | Valley(Q)|. Moreover for each i € [n] define
area(p,) (i) = #squares between the it step of @ and the ;" step of P,

where j = Projg(i). Consider the statistics valley-column area and valley-row area of (P, Q) given by

vearea(P, Q) = Z area(p,) (i), vrarea(P, Q) = Z area(p,g)(i +1).
i€ Valley (Q) 1€ Valley (Q)
P P
Q Q
(a) vearea(P,Q) =2+3+2=17 (b) vrarea(P,Q) =2+4+3=9

Theorem 2.4. For anyn > 1,
Z qvcarca(P,Q)tnval(Q) — Z quarca(P,Q)tnval(Q).
(P,Q)EHR (P,Q)EHR
Let LRMin(o) denote the set of left-to-right minima in ¢ where o € S,,.

Theorem 2.5. For anyn > 1,

Z qmaj(U)XLRMin(U) _ Z qfoze(U)XLRMin(U)
o€ Av(132) o€ Av(132)

A Dyck path of length 2n is a lattice path in Z2 between (0,0) and (2n,0) consisting of up-steps (1,1)
and down-steps (1, —1) which never go below the z-axis. For convenience we denote the up-steps by U and
the down-steps by D enabling us to encode a Dyck path as a Dyck word (we will refer to the two notions
interchangeably). Let D,, denote the set of all Dyck paths of length 2n. For P € D, let |P| = 2n denote
the length of P. There are many statistics associated with Dyck paths in the literature. Here we will
consider several Dyck path statistics that are intimately related with the inv statistic on pattern avoiding
permutations.

Let P =s1---59, € D,,. A double rise in P is a subword UU and a double fall in P a subword DD. Let
dr(P) and df(P) respectively denote the number of double rises and double falls in P. A peak in P is an up-
step followed by a down-step, in other words, a subword of the form UD. Let Peak(P) = {p : spsp4+1 = UD}
denote the set of indices of the peaks in P and npea(P) = | Peak(P)|. For p € Peak(P) define the height of p,
htp(p), to be the y-coordinate of its highest point. A valley in P is a down step followed by an up step, in other
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words, a subword of the form DU. Let Valley(P) = {v : sy8y4+1 = DU} denote the set of indices of the valleys
in P and nval(P) = | Valley(P)|. For v € Valley(P) define the height of v, htp(v), to be the y-coordinate of
its lowest point. For each v € Valley(P), there is a corresponding tunnel which is the subword s; - - - s, of P
where i is the step after the first intersection of P with the line y = htp(v) to the left of step v (see Figure
1). The length, j — 4, of a tunnel is always an even number. Let Tunnel(P) = {(¢,7) : s; - - - s; tunnel in P}
denote the set of pairs of beginning and end indices of the tunnels in P. Cheng et.al. [4] define the statistics
sumpeaks and sumtunnels given respectively by

spea(P) = Z (htp(p) — 1), stun(P) = Z (j—1)/2.
pEPeak(P) (¢,j) €Tunnel (P)

Let Up(P) = {i : s; = U} denote the indices of the set of U-steps in P. Given i € Up(P) define the height
of i, htp(7), to be the y-coordinate of its leftmost point. Define the statistic sumups by

sups(P) = Y [htp(i)/2].
i€Up(P)

Burstein and Elizalde [3] define a statistic which they call the mass of P. For each i € Up(P) define the
mass of i, massp(i), as follows. If s;41 = D, then massp(i) = 0. If s;44 = U, then P has a subword of the
form s;UP;DP,D where Py, P, are Dyck paths and we define massp(i) = |P2|/2. In other words, the mass
is half the number of steps between the matching D-steps of two consecutive U-steps. Define

mass(P) = Z massp (7).
i€Up(P)
The standard bijection A : Av,(231) — D,, can be defined recursively by A(c) = UA(01)DA(02), where

FIGURE 1. The tunnel lengths of a Dyck path (indicated with dashes) and the mass asso-
ciated with the first three up-steps is highlighted with matching colours.
o = 213[1, 01, 02]. The following theorem is essentially a restatement of [3, Theorem 3.11]

Theorem 2.6. For all 0 € Av,(231) and P € D,, we have
(i) mad(o) = mass(A(c)) + dr(A(0)),
(i) a bijection © : D,, — D,, such that sups(P) = mass(©(P)) + dr(0(P)).

Theorem 2.7. There exists a bijection ® : D,, — D,, such that stun(P) = mass(®(P)) + dr(®(P)). In

particular for anyn > 1,
Z qstun(P) — Z qmass(P)—&-dr(P)-

PED, PED,
Corollary 2.8. For anyn > 1,
Z qmad(o) _ Z qinv(o')'
oc€Av,(231) o€ Av, (321)

Proof. By [4, Proposition 4.1], [4, Theorem 4.2], Theorem 2.7 and Theorem 2.6 (i) we have the following
diagram of weight preserving bijections



(Av,(321),inv) —— (D,,,spea) ——— (D, stun)

s L

(Av,(231), mad) = (D,,, mass + dr)

Thus ¢ = A=t o ® o W oI is our sought bijection with inv(c) = mad(¢(c)) for all o € Av,,(321).

The following corollary answers a question of Burstein and Elizalde in [3].

Corollary 2.9. There exists a bijection A : D,, — D,, such that spea(P) = sups(A(P)). In particular for

anyn >1,
Z qspea(P) — Z qsups(P).
PeD, PeD,

A complete summary of proved (and conjectured) equidistributions may be found in [1, Table 2].
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