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One of the major trends in bioinformatics and biomathematics is the study of the genome rear-
rangement problem. Roughly speaking, given a genome, one is interested in understanding how
the genome can evolve into another genome. To give a proper formalization, several models for
rearranging a genome have been introduced, each of which defines a series of allowed elementary
operations to be performed on a genome in order to obtain an adjacent one. For several models,
it is possible to define a distance between two genomes, by counting the minimum number of
elementary operations needed to transform one genome into the other. The investigation of the
main properties of such a distance becomes then a key point in understanding the main features
of the model under consideration.

A common formalization of any such models consists of encoding a genome using a permutation
(in linear notation) and describing an elementary operation as a combinatorial operation on the
entries of such a permutation. Many genome rearrangement models have been studied under
this general framework. For instance, the reversal model consists of a single operation, defined
as follows: a new permutation is obtained from a given one by selecting a cluster of consecutive
elements and reversing it. More formally, given π = π1π2 · · ·πn, a reversal is performed by choos-
ing i < j < n and then forming the permutation σ = π1 · · ·πi−1 πjπj−1 · · ·πi+1πi πj+1 · · ·πn.

This model was introduced in [9], then studied for instance in [1, 8]. Another interesting model,
proposed in [6], is the tandem duplication-random loss model, in which a cluster of consecutive
elements of a permutation is replicated (next to the original one), then one copy of each du-
plicated element is deleted at random. As a final example, a very popular and studied model
is the transposition model, see [2]. Given a permutatation π = π1 · · ·πn, a transposition oper-
ation consists of taking two adjacent clusters of consecutive elements and interchanging their
positions. Formally, one has to choose indices i < j < k < n, then form the permutation
σ = π1 · · ·πi−1 πj+1πj+2 · · ·πk πiπi+1 · · ·πj πk+1 · · ·πn.

Independently from the chosen model, there are some general questions that can be asked in
order to gain a better understanding of its combinatorial properties. First of all, the operations
of the model often (but not always) allow to define a distance d between two permutations ρ and
σ, as the minimum number of elementary operations needed to transform ρ into σ. Moreover,
when the operations are nice enough, the above distance d could even be left-invariant, meaning
that, given permutations π, ρ, σ (of the same length), d(π, ρ) = d(σπ, σρ). As a consequence,
choosing for instance σ = ρ−1, the problem of evaluating the distance d(π, ρ) reduces to that
of sorting π with the minimum number of elementary allowed operations. Now, if d is a left-
invariant distance on the set Sn of all permutations of the same length, define the k-ball of Sn
to be the set B

(d)
k (n) = {ρ ∈ Sn | d(ρ, idn) ≤ k}, where idn is the identity permutation of length

n. The following questions appear quite natural to ask:

• compute the diameter of B
(d)
k (n), i.e. the maximum distance between two permutations

of B
(d)
k (n);
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• compute the diameter of Sn, i.e. the maximum distance between two permutations of Sn;

• characterize the permutations of ∂B
(d)
k (n), i.e. the permutations of B

(d)
k (n) having maxi-

mum distance from the identity;

• characterize the permutations of ∂Sn, i.e. the permutations of Sn having maximum dis-
tance from the identity;

• characterize and enumerate the permutations of B
(d)
k (n);

• design sorting algorithms and study the related complexity issues.

In the literature there are several results, concerning several evolution models, which give some
insight into the above problems. Our work starts from the observation that, in many cases,

the balls B
(d)
k (n) can be characterized in terms of pattern avoidance. This idea is not new;

as far as we know, the first model which has been investigated from this point of view is the
(whole) tandem duplication-random loss model: Bouvel andd Rossin [5] have in fact shown

that, in such a model, the ball B
(d)
k =

⋃
n≥0B

(d)
k (n) is a class of pattern avoiding permutations.

Subsequent works [4, 3, 7] have been done concerning the characterization and enumeration of
the basis permutations of such classes. However, this appears to be an isolated case, and no
further models have been analyzed using this approach. This is in sharp contrast with the fact
that, in many interesting cases, the same observation is true. What we propose here is then a
systematic investigation of the evolution models of the genome rearrangement problems using
the permutation pattern paradigm. Specifically, for any given left-invariance distance on Sn, it

is interesting to understand if the balls B
(d)
k are classes of pattern avoiding permutations and,

in the affirmative case, to investigate the property of such a class (starting of course from its
basis).

In this talk we just scratch the surface of a single case, namely the transposition model. Given
permutations σ and π of length n, denoting by dt the minimum number of block transpositions
needed to transform σ into π, it is not difficult to show that dt is in fact a left-invariant distance
on Sn. From now on, we will denote with dt(π) the distance of π from the identity permutation
(of the correct length). Our first result, very easy to show, is the observation that this model
can in fact be studied with the tools of pattern avoidance.

Proposition 1. Given π ∈ Sn and σ ∈ Sm, if σ ≤ π then dt(σ) ≤ dt(π). As a consequence, if
Bk = {π | dt(π) ≤ k} is the ball of radius k, then Bk is a class of pattern avoiding permutations,
for all k.

So the main issue is now to characterize Bk as a pattern avoiding class; in particular, we aim at
investigating the structure of the permutations of Bk and enumerating its basis. We have only
some partial results, which we are going to illustrate.

Before stating what we have obtained, we need a few notations and definitions.

A strip of π = π1π2 · · ·πn ∈ Sn is a maximal consecutive substring πi · · ·πi+k−1 such that, for
all j = 1, . . . i+ k − 2, πj+1 = πj + 1.

A permutation π is said to be reduced when, for all i = 1, . . . , n−1, πi+1 6= πi+1. In other words,
π is a reduced permutation when it does not have points that are adjacent both in positions
and values. Equivalently, a permutation is reduced if and only if all of its strips have length 1.
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Any permutation π can be associated with a reduced permutation, denoted red(π), which is
obtained by replacing each string of π with its minimum element, then suitably rescaling the
resulting word. It is easy to observe that red(π) ≤ π. Moreover, for every permutation π, we
have that dt(π) = dt(red(π)).

Given π ∈ Sn, let v1, . . . vn be nonnegative integers. The monotone expansion of π through
v = (v1, . . . vn) is the permutation π[v] = π[idv1 , . . . , idvn ] obtained from π by replacing each
element πi of π with the identity permutation idvi of length i suitably rescaled, so to mantain
the relative order of the elements of π. So, for instance, if π = 41352 and v = (0, 2, 1, 3, 2),
we have π[v] = . . .︸︷︷︸

4

12︸︷︷︸
1

5︸︷︷︸
3

678︸︷︷︸
5

34︸︷︷︸
2

. The notion of monotone expansion is clearly related to

those of inflation and of geometric grid class.

For a given permutation π, we denote with EM(π) the set of all monotone expansions of π.
More generally, if C is a set of permutations, we set EM(C) =

⋃
π∈C EM(π).

Lemma 2. Given a {−1, 0, 1}-matrix M , denote with Geom(M) the geometric grid class of
permutations determined by M . Given a permutation π, let Mπ be its permutation matrix.
Then:

1. Geom(Mπ) = Geom(Mred(π));

2. EM(π) = Geom(Mπ);

3. EM(π) = EM(red(π)).

From general facts of the theory of geometric grid classes, we are lead to the following result.

Corollary 3. If C is a set of reduced permutations, then EM(C) is a class of pattern avoiding
permutations. Moreover, EM(C) is strongly rational and finitely based.

Coming back to our starting problem, we have complete results concerning the set B1 of per-
mutations having distance 1 from the identity.

Theorem 4. B1 = EM(1324).

Theorem 5. π ∈ B1 if and only if π avoids the patterns 321, 2143, 2413, 3142.

We are also able to enumerate the class B1.

Theorem 6. For every n ≥ 1, let fn = B1 ∩ Sn be the number of permutations of length n
having distance 1 from the identity. Then

fn =

(
n+ 3

n

)
− 2

(
n+ 2

2

)
+ n+ 2,

and its generating function is

F (x) =
∑
n≥0

fnx
n =

1− 3x+ 4x2 − x3

(1− x)4
.

The associated sequence is sequence A050407 in the OEIS.

Concerning larger values of k, we have been able to prove the following general result.

3



Theorem 7. Let k ≥ 1.

1. There exist N = N(k) reduced permutations α(1), . . . , α(N) of length 3k+1, each at distance
k from the identity, such that

Bk =
N⋃
j=1

EM(α(j).

2. Bk is a strongly rational and finitely-based permutation class; moreover, each permutation
of its basis has length at most 3k + 1.
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