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Abstract

Baxter permutations are known to be in bijection with a wide number
of combinatorial objects. Previously, it was shown that each of these
objects had a natural involution which was carried equivariantly by the
known bijections, and the number of objects fixed under involution was
given by Stembridge’s “q=-1” phenomenon. In this paper, we consider the
order 4 action of a quarter-turn rotation of a Baxter permutation matrix,
refining the half-turn rotation previously studied. Using the method of
generating trees, we show that the number of Baxter permutations fixed
under quarter-turn rotation has a very nice enumeration, which suggests
the existence of a combinatorial bijection.

Keywords: Baxter permutations, symmetry, pattern avoidance, generating
trees

1 Baxter Permutations

Baxter permutations are a well-studied class of permutations, which have a
number of symmetries and nice properties associated to them.

Definition 1.1. We say that a Baxter permutation is a permutation that avoids
the patterns 3-14-2 and 2-41-3, where an occurrence of the pattern 3-14-2 in a
permutation w = w1 . . . wn means there exists a quadruple of indices {i, j, j +
1, k} with i < j < j + 1 < k and wj < wk < wi < wj+1 (and similarly for
2-14-3)1.

It is easy to see from the definition that Baxter permutations will be closed
under two natural involutions. One of them reverses the order of a word (w =
w1 . . . wn 7→ wn . . . w1), and the other reverses the order of the labels (w =
w1 . . . wn 7→ (n + 1 − w1) . . . (n + 1 − wn)). These correspond to reflecting
a permutation matrix horizontally and vertically (respectively). It is slighly
less clear that Baxter permutations will be closed under taking inverses, which
corresponds to reflecting the permutation matrix across a diagonal line. This
means that Baxter permutations carry the full dihedral action of the square.

1Such patterns are sometimes called vincular patterns.
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It is clear that the first two involutions individually will never have any fixed
points for n > 1.

The author has previously shown that the combination of the first two invo-
lutions (correspond to a half-turn of the permutation matrix) is carried equivari-
antly to a natural rotation on other combinatorial objects, and the enumeration
of fixed points is an instance of the ”q = −1 phenomenon“. [2]

Baxter permutations fixed under reflection across the diagonal correspond
to self-involutive Baxter permutations, and these have previously been consid-
ered. Bousqet-Mélou came up with enumerative formulas for the number of
fixed-point free self-involutive Baxter permutations of length 2n, which has the

surprisingly simple closed formula bn = 3·2n−1

(n+1)(n+2)

(
2n
n

)
, as well as refined enu-

meration with respect to various statistics [1]. Later, Fusy used planar maps to
give a combinatorial proof of the enumeration for bn, as well as a closed-form
multivariate enumeration for all self-involutive Baxter permutations [1].

The last remaining conjugacy class of dihedral actions on Baxter permuta-
tions is the one corresponding to 90◦ rotations, which we now consider.

Theorem 1.2. The number of Baxter permutations of length n fixed under 90◦

rotation of its permutation matrix is 2mCm (where Cm is the Catalan number)
if n = 4m + 1, and zero otherwise.

To prove this, we will recall and extend the method of generating tress orig-
inally used by Chung, Graham, Hoggat, and Kleiman to enumerate all Baxter
permutations.

1.1 Generating Tree for Baxter permutations

Baxter permutations are given by a vincular pattern, where we have adjacency
issues to consider, so it is not immediately obvious that they are closed under
removing the largest label.

Lemma 1.3. If w is a Baxter permutation, and we remove its largest label,
then the result is still a Baxter permutation

Therefore, every Baxter permutation of length n uniquely arises from taking
a Baxter permutation of length n−1 and inserting n into an admissible position.

The admissible places where we can insert a new largest label into a Baxter
permutation are immediately to the left of a left-to-right maxima, and immedi-
ately to the right of a left-to-right maxima.

The resulting Baxter permutation will also have a predictable number of
left-to-right and right-to-left maxima. Say w has left-to-right maxima x1 <
x2, . . . < xi = n and right-to-left maxima n = yj > yj−1 > . . . > y1. If we insert
n+ 1 to the left of xk, the resulting permutation will have left-to-right maxima
x1 < . . . < xk−1 < n + 1, and right-to-left maxima n + 1 > n = yj > . . . > y1.
If we insert n + 1 to the right of yk, the resulting permutation will have left-
to-right maxima x1 < x2 < . . . xi = n < n + 1, and right-to-left maxima
n + 1 > yk−1 > . . . > y1.
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This means that the number of children a given Baxter permutation has (and
how many children those children will have, and so on) is entirely encoded by
the number i of left-to-right maxima, and the number j of right-to-left maxima.
Thus, the tree with root (1, 1), and the property that every node (i, j) has
children (1, j + 1), (2, j + 1), . . . (i, j + 1), (i+ 1, j), (i+ 1, j− 1), . . . (i+ 1, 1) will
be isomorphic to the generating tree for Baxter permutations.

Corollary 1.4. Baxter permutations have the same number of descents as in-
verse descents.

We already have a combinatorial rule for when we can insert a new largest
entry into a Baxter permutation and still be a Baxter permutation, so now we
come up with a combinatorial rule for when we can insert a new smallest entry
into a Baxter permutation and still be a Baxter permutation. By inserting
a new smallest entry, we mean that we increase all the labels in the existing
permutation by 1, and then insert a new entry with label 1, so that if the
original permutation was a standard permutation of n letters on [n], then the
result will be a standard permutation on [n + 1].

Lemma 1.5. Inserting a new smallest label into position j into a permutation
is equivalent to rotating the permutation matrix 180◦, inserting n into position
n + 1− j, and then rotating the permutation matrix 180◦ again.

Consequently, given a Baxter permutation w, the admissible places we can
insert a new smallest label are immediately to the left of a left-to-right minima,
or immediately to the right of a right-to-left minima.

Again, we only need to keep track of the number of left-to-right and right-
to-left maxima. Each of these corresponds to a place where we can insert n+ 1,
and then we know there will be a complementary place we can insert 1 to stay
fixed under conjugation by the longest element. We know how inserting n + 1
will affect the number of left-to-right and right-to-left maxima. Inserting 1 will
in general not create any new left-to-right or right-to-left maxima, except in the
case where we are adding 1 to the beginning or end of the word.

1.2 Generating Tree for Baxter permutations fixed under
90◦ rotation

For a permutation to be fixed under 90◦ rotation, it is equivalent to say that
if wi = j, then wj = n + 1 − i, wn+1−i = n + 1 − j, and wn+1−j = i. If we
consider the cycle structure of this permutation, in general it makes a 4-cycle
(i, j, n + 1 − i, n + 1 − j). If this were to degenerate into a smaller cycle, we
would have that i = n + 1− i. This forces to n = 2i + 1 to be odd, and it also
forces i = j, which means it actually degenerates to a single central fixed point.
Thus, a permutation fixed under this action must have length 4m or 4m + 1.

If w is a Baxter permutation of length n with k descents, then by Corol-
lary 1.4, w−1 will have k descents, and w0w

−1 will have n− 1− k descents. So
for a Baxter permutation to be fixed by this action, we must have k = n−1−k,
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which implies that n must be odd, and along with our previous observation must
be n = 4m+1. Thus, a Baxter permutation fixed under 90◦ rotation will consist
of a single central fixed point, and four cycles of the form (i, j, n+1−i, n+1−j).

In particular, for n > 1, such a permutation will have a four cycle of the
form (1, j, n, n + 1 − j), which means the permutation starts with j, has n in
the jth position, 1 in the (n + 1 − j)th position, and n + 1 − j at the end. We
already know that we can remove n and 1 from a Baxter permutation and still
be a Baxter permutation. It’s not hard to see that we can also remove the first
element or the last element from a Baxter permutation and still be a Baxter
permutation. So if we take a Baxter permutation fixed under 90◦ rotation and
the remove the largest label, the smallest label, the first label, and the last label,
then we will still have a Baxter permutation, and it will still be fixed under 90◦

rotation. Thus, we can create a generating tree, with the identity permutation
on 1 element as the root

In order to create a four cycle, we have to come up with a combinatorial
rule for when we can insert a letter at the beginning (resp. end) of a Baxter
permutation, and still have it be a Baxter permutation. To insert a letter j at
the beginning of a permutation w of length n, we mean that we increase all the
labels greater than or equal to j in w by 1, and then prepend j, so the result is
a standard permutation on [n + 1].

Lemma 1.6. Inserting j at the end of a word is equivalent to rotating the
permutation matrix 90◦ clockwise, inserting n into position n + 1 − j, and the
rotating the permutation matrix 90◦ counter-clockwise.

Similarly, inserting j at the beginning of a word is equivalent to rotating a
permutation matrix 90◦ counter-clockwise, inserting n into position j, and then
rotating back 90◦ clockwise.

Consequently, we can insert j at the end (resp. beginning) of a Baxter per-
mutation and still have it be a Baxter permutation if and only if all entries
smaller than j appear to the left (resp. right) of j, or if all entries bigger than
j − 1 appear to the right (resp. left) of j − 1.

Note that inserting j at the end (resp. beginning) of Baxter permutation
can possibly decrease the number of right-to-left (resp. left-to-right) maxima,
as any previous left-to-right (resp. right-to-left) maxima that was less than j
will no longer be one after j is inserted at the end (resp. beginning).

Theorem 1.7. For a Baxter permutation fixed under 90◦ rotation, for every
admissible position we can insert a new largest label and still have a Baxter
permutation, it is also possible to insert a new smallest label, a new beginning
label, and a new final label so that the result is a Baxter permutation fixed under
90◦ rotation.

Now, we want analyze how doing these four insertions changes the number
of left-to-right and left-to-right maxima.

Lemma 1.8. If w is a Baxter permutation fixed under 90◦ rotation, then w
has the same number of left-to-right and right-to-left maxima. In particular, if

4



w has left-to-right maxima in positions x1 < x2 < . . . < xj and right-to-left
maxima at positions yj < yj−1 < . . . < y1, and we do a four cycle insertion
corresponding to being able to insert a new largest label to the right of wyi

(or to
the left of wxi

), then the resulting Baxter permutation fixed under 90◦ rotation
will have i + 1 left-to-right maxima and i + 1 right-to-left maxima.

We now have enough information to analyze the generating tree for Baxter
permutations fixed under rotation by 90◦ degrees. If a Baxter permutation fixed
under rotation by 90◦ degrees has i+1 left-to-right maxima and i+1 right-to-left
maxima, then it will have 2i+2 children. There will be i+1 children with number
of left-to-right (and right-to-left) maxima being 2, 3, . . . i + 2 corresponding to
inserting a new largest label to the left of a left-to-right maxima, and i + 1
children with number of left-to-right (and right-to-left) maxima being 2, 3, . . . i+
2 corresponding to inserting a new largest label to the right of a right-to-left
maxima.

Thus, this generating tree is almost like the Catalan tree, except each parent
with label i+ 1 has two (not one) children with a label between 2 and i+ 2, and
our root will have label 1. This implies that the number of elements of a given
rank m must be 2mCm.

1.3 Remarks

The fact that this enumeration has such an elegant closed formula means that
it is likely that there is an underlying combinatorial bijection. However, as with
Chung, Graham, Hoggat, and Kleiman, the method of generating trees does not
make such an interpretation transparent.

Additionally, one might hope that it is possible to extend the previous “q=-
1” result for Baxter permutations fixed under 180◦ rotation to an instance of
the cyclic sieving phenomenon. That is to say, finding a polynomial f(q) where
gives an enumeration of Baxter permutations (perhaps with respect to some
statistics), f(−1) counts how many of these Baxter permutations are fixed under
180◦ rotation, and f(i) = f(−i) counts how many of them are fixed under 90◦

rotation. However, the natural candidate of Θk,`(q) does not work, and it does
not appear that it can be easily modified to give such a result.
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