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The permutations realized by one-dimensional dynamical systems give insight into their
short-term behavior and provide a way of understanding the system’s complexity. Given a
map f : X → X from a linearly ordered set X to itself and a point x ∈ X, consider the finite
sequence

x, f(x), f(f(x)), . . . , fn−1(x).

If these n values are different, then their relative order determines a permutation π ∈ Sn
obtained by replacing the smallest value by a 1, the second smallest by a 2, and so on;
we denote this operation by st(x, f(x), f(f(x)), . . . , fn−1(x)) = π. For example, if f(x) =

{ 1+
√
5

2 x}, where {y} is the fractional part of y, and x = .52, we have

st(x, f(x), f2(x), f3(x)) = st(0.52, 0.84, 0.36, 0.58) = 2413.

We write Pat(x, f, n) = π, and say that π is an allowed pattern of f . If the first n iterations
of f starting with x are not distinct, then Pat(x, f, n) is not defined. We denote the set of
allowed patterns of length n by

Allown(f) = {Pat(x, f, n) : x ∈ X} ⊆ Sn,
and let Allow(f) =

⋃
n≥1 Allown(f). It was shown in [3] that if f is a piecewise monotone

map of the unit interval, then the number of allowed patterns is asymptotic to kn, where the
topological entropy of f (an important measure of complexity) is equal to log(k). Following
this result, permutation-based techniques have become an important way of measuring the
complexity of time-series [12].

However, the question of understanding permutations in dynamical systems was intro-
duced much earlier in the context of Sarkovskii’s Theorem about periodic points of interval
maps. Recall that point x ∈ X is an n-periodic point of f if fn(x) = x and f i(x) 6= x for
1 ≤ i < n.

Theorem 1 ([10]). If a continuous map f of the unit interval has an m-periodic point and
`Cm in the Sarkovskii ordering

1C2C22C23C · · ·C2nC · · ·C7 ·2nC5 ·2nC3 ·2nC · · ·C7 ·2C5 ·2C3 ·2C · · ·C9C7C5C3,

then f must also have an `-periodic point.

We may refine this question to consider how the existence of periodic points in f with a
certain permutation structure forces others to occur. Let x ∈ X be a n-periodic point such
that Pat(x, f, n) = π1π2 . . . πn, written in one-line notation. We say that the cycle type of
the point x is the cycle such that π̂ = (π1, π2, . . . , πn) ∈ Cn, written in cycle notation. In
particular, because the map π → π̂ identifies the cyclic rotations of π, the cycle type of an
n-periodic point does not depend on the representative of the periodic orbit. For this reason,
we will always take the representative of an n-periodic orbit to be the value x such that
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x > f i(x) for all 1 ≤ i < n and, when we write π̂, the permutation π is the one for which
π1 = n. We denote the set of all cycle types of the interval map f by

AlCycn(f) = {π̂ ∈ Cn : x is an n-periodic point of f and Pat(x, f, n) = π} ⊆ Cn,
and let AlCyc(f) =

⋃∞
n=1 AlCycn(f); we call this set the allowed cycles of f .

Definition 1 ([2]). Given a class of functions F , a cycle π̂ is said to force a cycle τ̂ , written
τ̂ E π̂, if every function f ∈ F that has a periodic point of cycle type π̂ also has a periodic
point with cycle type τ̂ .

For the class of continuous functions, the forcing relation on cycles is a partial order [2];
it is shown in Figure 1 for cycles with n ≤ 4.

(1, 3, 4, 2)

(1, 2, 3, 4) (1, 2, 4, 3) (1, 4, 3, 2)

(1, 2, 3) (1, 3, 2)

(1, 3, 2, 4) (1, 4, 2, 3)

(1, 2)

(1)

Figure 1. The poset of forcing relations, n ≤ 4, for continuous functions.

We will focus on two classes of maps which highlight the close relationship between prop-
erties of the dynamical system and the combinatorial structure of its allowed cycles. For
β > 1, the β-shift and −β-shift, respectively, defined on the unit interval are given by

Fβ(x) = {βx} and Gβ(x) = 1− {βx}.
The topological entropy, a measure of complexity, of both Fβ and Gβ is log(β).

Figure 2. Graphs of (a) Fβ(x) = {βx} for β = 1+
√
5

2
; (b) FN (x) = {Nx} for

N = dβe = 2; (c) Gβ(x) = 1 − {βx} for β = 9
4
; and (d) GN (x) = 1 − {Nx} and

N = dβe = 3.

In order to view the maps Fβ and Gβ combinatorially, we transform each map into a shift
Σ(w1w2w3 . . .) = w2w3 . . . over a set of words using non-integral base expansions. Let Wβ

be the set of all β-expansions of x ∈ [0, 1) where the order on words is lexicographical, see
[7]. Since words w ∈ Wβ correspond to x ∈ [0, 1) by fβ(x) =

∑∞
j=0

wj

βj , the the map Fβ is

equivalent to the shift map Σβ on (Wβ , <lex).
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Similarly, let W−β be the set of all −β-expansions of x ∈ (0, 1], see [6]. The order on the
set of words W−β is the alternating order whereby v1v2v3 . . . <alt w1w2w3 . . . if there exists
some i such that vj = wj for all j < i and (−1)i(vi − wi) > 0. Since words w ∈ W−β
correspond to x ∈ (0, 1] by gβ(x) = −

∑∞
j=0

wj+1
(−β)j , the map Gβ is equivalent to the shift map

Σ−β on (W−β , <alt).
It follows that a cycle π̂ ∈ AlCycn(Fβ) if and only if there exists an n-periodic word

w = (w1w2 . . . wn)∞ ∈ Wβ such that Pat(w,Σβ , n) = π. Likewise, π̂ ∈ AlCycn(Gβ) if and
only if Pat(w,Σ−β , n) = π for some n-periodic word w = (w1w2 . . . wn)∞ ∈ W−β . The first
line of the following theorem is known; the negative case can be found in [11].

Theorem 2. If β < γ, then Wβ ⊂ Wγ (resp. W−β ⊂ W−γ) and so

AlCycn(Fβ) ⊆ AlCycn(Fγ) and AlCycn(Gβ) ⊆ AlCycn(Gγ).

In particular, unlike for the class of continuous maps, the forcing order for the class of
β-shifts (resp. −β-shifts) is a total order.

To study the total order, we associate to each cycle a measure of the minimal complexity
of a system containing the given cycle type by

Bp(π̂) = inf{β : π̂ ∈ AlCyc(Fβ)} and Bp(π̂) = inf{β : π̂ ∈ AlCyc(Gβ)}.

We first determine the n-periodic k-ary words w such that Pat(w,Σk, n) = π and
Pat(w,Σ−k, n) = π, respectively.

Definition 3. A k-segmentation (resp. −k-segmentation) of π̂ = π̂1π̂2 . . . π̂n is a sequence
0 = e0 ≤ e1 ≤ · · · ≤ ek = n such that each segment π̂et+1π̂et+2 . . . π̂et+1

is increasing (resp.
decreasing).

To a segmentation of π̂, we associate the finite word ω = z1z2 . . . zn−1, defined by taking
zi = j whenever ej < πi ≤ ej+1 for 1 ≤ i ≤ n− 1 and say that the segmentation defines ω.

Theorem 4 ([1]). Let π̂ ∈ Cn and let ω be the word defined by a k-segmentation (resp.
−k-segmentation) of π̂. If ω is primitive, i.e. is not equal to one of its non-trivial cyclic
rotations, then the word ω∞ is an n-periodic word such that Pat(ω∞,Σk, n) = π (resp.
Pat(ω∞,Σ−k, n) = π).

Example 5. Consider the cycle π̂ = (5, 3, 1, 4, 2) = 45123, and so π = 53142. Notice that
π̂ has a unique 2-segmentation given by (e0, e1, e2) = (0, 2, 5) defining the word ω = 11010.
We can see that Pat(ω∞,Σ2, 5) = π because taking shifts of ω∞ we obtain

Pat(ω∞,Σ2, 5) = st((11010)∞, (10101)∞, (01011)∞, (10110)∞, (01101)∞) = 53142,

where the order on words is lexicographical. The word ω∞ ∈ W2 corresponds to x = 26
31 , the

representative of the unique 5-periodic orbit of F2 with cycle type π̂.

Theorem 6 ([1]). Let Np(π̂) = dBp(π̂)e and Np(π̂) = dBp(π̂)e. Then

Np(π̂) = 1 + des(π̂) and Np(π̂) = 1 + asc(π̂) + δ(π̂),

where δ(π̂) = 1 if the word ω defined by the −(1+asc(π̂))-segmentation of π̂ is not primitive;
and δ(π̂) = 0 otherwise.
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Figure 3. Cycle diagrams for (a) π̂ = 4516723 and (b) π̂ = 87651432 from
Example 7. including sloped lines to indicate the choice of segmentation.

Example 7. (a) Consider the cycle π̂ = (7, 3, 1, 4, 6, 2, 5) = 4516723 and so π = 7314625,
see Figure 3. The unique 3-segmentation of π̂ is given by (e0, e1, e2, e3) = (0, 2, 5, 7)
defining the word ω = 2101201. By Theorem 4, we have Pat(ω∞,Σ3, 7) = π. We
calculate Bp(π̂) = 2.3708832 by solving for the unique β > 1 such that for w = ω∞ we
have fβ(w) = 1.

(b) Consider the cycle π̂ = (8, 2, 7, 3, 6, 4, 5, 1) = 87651432 and so π = 82736451, see Figure
3. The unique −2-segmentation of π̂ is given by (e0, e1, e2) = (0, 5, 8) defining the word
ω = 1010100. By Theorem 4, we have Pat(ω∞,Σ−2, 8) = π. We find that Bp(π̂) =
1.9878, and so Gβ has an 8-periodic point with cycle type π̂ if and only if β > 1.9878.

Observation: Since the number descents (resp. ascents) in cycles is asymptotically normally
distributed [9], we have that Np(π̂) (resp. Np(π̂)) is also asymptotically normally distributed
with mean n+1

2 and variance n+1
12 .

B(π̂) polynomial π̂ ω∞

1.3803 x4 − x3 − 1 (4, 1, 2, 3) = 2341 (1000)∞

1.4656 x3 − x2 − 1 (3, 1, 2) = 231 (100)∞

1.7549 x4 − x3 − x2 − 1 (4, 3, 1, 2) = 2413 (1100)∞

1.8393 x3 − x2 − x− 1 (3, 2, 1) = 312 (110)∞

1.9276 x4 − x3 − x2 − x− 1 (4, 3, 2, 1) = 4123 (1110)∞

2.2775 x4 − 2x3 − x− 1 (4, 1, 3, 2) = 3421 (2010)∞

2.5214 x4 − 2x3 − x2 − 2 (4, 2, 1, 3) = 3142 (2101)∞

2.6968 x4 − 2x3 − x2 − 2x− 1 (4, 2, 3, 1) = 4312 (2120)∞

B(π̂) polynomial π̂ ω∞

1 x3 − 2x2 + x (3, 2, 1) = 312 (100)∞

1.4655712 x3 − 2x2 + x2 − x+ 1 (4, 2, 1, 3) = 3142 (1001)∞

1.7549 x3 − 2x2 + x− 1 (3, 1, 2) = 231 (101)∞

1.754877 x4 − 2x3 + x2 − x (4, 2, 3, 1) = 4312 (1000)∞

1.8832 x4 − 2x3 + x2 − 2x+ 1 (4, 1, 3, 2) = 3421 (1011)∞

2.205569 x4 − 2x3 + 2x2 − x+ 1 (4, 3, 1, 2) = 2413 (2101)∞

2.32471 x4 − 3x3 + 2x2 − x (4, 3, 2, 1) = 4123 (2100)∞

2.80715 x4 − 2x3 + x2 − 2x+ 2 (4, 1, 2, 3) = 2341 (2012)∞

Table 1. The values of Bp(π̂) and Bp(π̂), respectively, for cycles π̂ of length
n = 3, 4, illustrating the forcing order on cycles for the β-shifts and −β-
shifts.

The techniques presented here can be generalized to larger classes of maps as long as the
sets of words associated to the maps are well-understood. It is worth mentioning that the
forcing order for the class of logistic functions fr(x) = rx(1− x) parametrized by the value

r ∈ (1 +
√

6, 4] is not a total order.
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