PATTERNS AND CYCLES IN DYNAMICAL SYSTEMS
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The permutations realized by one-dimensional dynamical systems give insight into their
short-term behavior and provide a way of understanding the system’s complexity. Given a
map f: X — X from a linearly ordered set X to itself and a point € X, consider the finite
sequence

2, F@), f(F@)s o S ).
If these n values are different, then their relative order determines a permutation m € S,
obtained by replacing the smallest value by a 1, the second smallest by a 2, and so on;
we denote this operation by st(z, f(z), f(f(x)),..., f*"Y(z)) = 7. For example, if f(x) =

{HT‘/ga:}, where {y} is the fractional part of y, and x = .52, we have

st(z, f(x), f2(x), f3(z)) = st(0.52,0.84, 0.36,0.58) = 2413.

We write Pat(z, f,n) = m, and say that « is an allowed pattern of f. If the first n iterations
of f starting with = are not distinct, then Pat(z, f,n) is not defined. We denote the set of
allowed patterns of length n by

Allow,,(f) = {Pat(z, f,n) : xz € X} C Sp,

and let Allow(f) = ,,~; Allow,(f). It was shown in [3] that if f is a piecewise monotone
map of the unit interval, then the number of allowed patterns is asymptotic to k™, where the
topological entropy of f (an important measure of complexity) is equal to log(k). Following
this result, permutation-based techniques have become an important way of measuring the
complexity of time-series [12].

However, the question of understanding permutations in dynamical systems was intro-
duced much earlier in the context of Sarkovskii’s Theorem about periodic points of interval
maps. Recall that point # € X is an n-periodic point of f if f*(x) = x and fi(z) # z for
1<i<n.

Theorem 1 ([10]). If a continuous map f of the unit interval has an m-periodic point and
£ <am in the Sarkovskii ordering

192922923 9--- 92"+ Q72" 95-2" 932" - --<17-245-243-24--- 9947153,
then f must also have an £-periodic point.

We may refine this question to consider how the existence of periodic points in f with a
certain permutation structure forces others to occur. Let € X be a n-periodic point such
that Pat(x, f,n) = mymy...m,, written in one-line notation. We say that the cycle type of
the point z is the cycle such that # = (71, 7e,...,7,) € Cy, written in cycle notation. In
particular, because the map m — 7 identifies the cyclic rotations of m, the cycle type of an
n-periodic point does not depend on the representative of the periodic orbit. For this reason,
we will always take the representative of an n-periodic orbit to be the value x such that
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x > fi(z) for all 1 < i < n and, when we write 7, the permutation 7 is the one for which
w1 = n. We denote the set of all cycle types of the interval map f by

AlCyc, (f) = {7 € Cy, : x is an n-periodic point of f and Pat(z, f,n) =} C C,,
and let AlCyc(f) = J;—, AlCyc, (f); we call this set the allowed cycles of f.

Definition 1 ([2]). Given a class of functions F, a cycle & is said to force a cycle 7, written
7 47, if every function f € F that has a periodic point of cycle type 7 also has a periodic
point with cycle type 7.

For the class of continuous functions, the forcing relation on cycles is a partial order [2];
it is shown in Figure 1 for cycles with n < 4.

(17 37 47 2)
— ~
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FIGURE 1. The poset of forcing relations, n < 4, for continuous functions.

We will focus on two classes of maps which highlight the close relationship between prop-
erties of the dynamical system and the combinatorial structure of its allowed cycles. For
8 > 1, the S-shift and —(-shift, respectively, defined on the unit interval are given by

Fg(x) ={fz} and Gg(z)=1-{Bx}.
The topological entropy, a measure of complexity, of both Fz and G is log(f

NN

FIGURE 2. Graphs of (a) Fg(x) = {Bz} for 8 =
N =[] =2; (c) Ga(x) = 1 — {Bz} for B = F;
N =18 =3.

V3. (b) Fn(z) = {Nz} for
and (d) ~(z) =1—{Nz} and

In order to view the maps Fj3 and Gg combinatorially, we transform each map into a shift
Y(wiwews ...) = waws ... over a set of words using non-integral base expansions. Let Wg
be the set of all S-expansions of x € [0,1) where the order on words is lexicographical, see
[7]. Since words w € Wy correspond to = € [0,1) by fa(x) = 372, %, the the map Fj is
equivalent to the shift map g on (Wg, <jex)-
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Similarly, let W_g be the set of all —S-expansions of z € (0, 1], see [6]. The order on the
set of words W_g is the alternating order whereby vivav3 ... <at wiwaws . .. if there exists
some i such that v; = w; for all j < i and (—1)"(v; — w;) > 0. Since words w € W_g
correspond to x € (0, 1] by gg(z) = — Z;io %, the map Gpg is equivalent to the shift map
Y_pon (W_g, <alt)-

It follows that a cycle # € AlCyc,(Fj3) if and only if there exists an n-periodic word
w = (wiws...w,)™ € Wg such that Pat(w,Xs,n) = 7. Likewise, # € AlCyc, (G3) if and
only if Pat(w,¥X_g,n) = for some n-periodic word w = (wyws ...w,)>*° € W_g. The first
line of the following theorem is known; the negative case can be found in [11].

Theorem 2. If B < v, then Wz CW,, (resp. W_g C W_,,) and so
AlCyc, (Fg) C AlCyc,,(Fy) and AlCyc,(Gg) C AlCyc,, (G,).

In particular, unlike for the class of continuous maps, the forcing order for the class of
B-shifts (resp. —pB-shifts) is a total order.

To study the total order, we associate to each cycle a measure of the minimal complexity
of a system containing the given cycle type by

B,(#) =inf{B: # € AlCyc(F3)} and B,(#) =inf{B:# € AlCyc(Gp)}.

We first determine the n-periodic k-ary words w such that Pat(w, Xk, n) = 7 and
Pat(w,X_j,n) = 7, respectively.

Definition 3. A k-segmentation (resp. —k-segmentation) of # = 175 ... 7, is a sequence
0=ep <ey <--- < e, =mn such that each segment 7e, {17c,42... e, , is increasing (resp.
decreasing).

To a segmentation of 7, we associate the finite word w = 2125 ... z,_1, defined by taking
z; = j whenever e; < m; < ejyq1 for 1 <¢<n —1 and say that the segmentation defines w.

Theorem 4 ([1]). Let # € C,, and let w be the word defined by a k-segmentation (resp.
—k-segmentation) of . If w is primitive, i.e. 1is not equal to one of its non-trivial cyclic
rotations, then the word w™ is an n-periodic word such that Pat(w™>, Xk, n) = 7 (resp.
Pat(w™,X_k,n) =7).

Example 5. Consider the cycle & = (5,3,1,4,2) = 45123, and so m = 53142. Notice that
# has a unique 2-segmentation given by (eg, e1,e2) = (0,2,5) defining the word w = 11010.
We can see that Pat(w®,Xs,5) = 7 because taking shifts of w> we obtain

Pat(w™, 2, 5) = st((11010)°, (10101)>, (01011)>, (10110)°, (01101)>) = 53142,

where the order on words is lexicographical. The word w* € W, corresponds to x = %, the
representative of the unique 5-periodic orbit of F» with cycle type 7.
Theorem 6 ([1]). Let Ny(#) = [B,(#)] and N,(#) = [B,(#)]. Then

Ny(7) =1+des(ft) and Ny(#) =1+ asc()+ &(7),

where 6(7t) = 1 if the word w defined by the —(1+ asc(7))-segmentation of 7 is not primitive;
and §(7) = 0 otherwise.
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FIGURE 3. Cycle diagrams for (a) # = 4516723 and (b) 7 = 87651432 from
Example 7. including sloped lines to indicate the choice of segmentation.

Example 7. (a) Consider the cycle # = (7,3,1,4,6,2,5) = 4516723 and so m = 7314625,
see Figure 3. The unique 3-segmentation of 7 is given by (eg,e1,e2,e3) = (0,2,5,7)
defining the word w = 2101201. By Theorem 4, we have Pat(w®,X¥3,7) = 7. We
calculate B, (7) = 2.3708832 by solving for the unique § > 1 such that for w = w™ we
have fg(w) = 1.

(b) Consider the cycle 7 = (8,2,7,3,6,4,5,1) = 87651432 and so m = 82736451, see Figure
3. The unique —2-segmentation of 7 is given by (eg, e1,e2) = (0,5, 8) defining the word
w = 1010100. By Theorem 4, we have Pat(w>,X_5,8) = 7. We find that B,(#) =
1.9878, and so G has an 8-periodic point with cycle type 7 if and only if 8 > 1.9878.

Observation: Since the number descents (resp. ascents) in cycles is asymptotically normally

distributed [9], we have that N,(#) (resp. N, (7)) is also asymptotically normally distributed
with mean 2 and variance %t1

2 12 -

B(7) polynomial T w™ B(7) polynomial b w™
1.3803 at -2t -1 (4,1,2,3) = 2341 | (1000)> 1 28— 222 4w (3,2,1) =312 | (100)>
1.4656 23— 22 —1 (3,1,2) =231 (100)> 1.4655712 | 2 — 222+ 22—z +1 | (4,2,1,3) = 3142 | (1001)>
1.7549 2t —a2% -2 -1 (4,3,1,2) = 2413 | (1100)> 1.7549 28— 222+ -1 (3,1,2) =231 | (101)>
1.8393 28 —a?—r—1 (3,2,1) =312 | (110)>® 1.754877 2t —22% 42— 2 (4,2,3,1) = 4312 | (1000)>°
1.9276 | a2t — 2% — 22 —2—1 | (4,3,2,1) = 4123 | (1110)>® 1.8832 |t —22% +a?—20+1 | (4,1,3,2) = 3421 | (1011)>
2.2775 zt —22% — -1 (4,1,3,2) = 3421 | (2010)>® 2.205569 | ' —22% + 227 — x4+ 1| (4,3,1,2) = 2413 | (2101)>
25214 | at—22% — 2% -2 (4,2,1,3) = 3142 | (2101)>® 2.32471 2t =323 4+ 222 — x| (4,3,2,1) = 4123 | (2100)>
2.6968 | 2t — 2% — a2 — 22 — 1| (4,2,3,1) = 4312 | (2120)> 2.80715 | ot — 223 + 2% — 20+ 2 | (4,1,2,3) = 2341 | (2012)>

TABLE 1. The values of B,(#) and B,(#), respectively, for cycles 7 of length

n = 3,4, illustrating the forcing order on cycles for the fS-shifts and —g-
shifts.

The techniques presented here can be generalized to larger classes of maps as long as the
sets of words associated to the maps are well-understood. It is worth mentioning that the
forcing order for the class of logistic functions f,(x) = rz(1 — x) parametrized by the value
r € (1++/6,4] is not a total order.

REFERENCES

[1] K. Archer and S. Elizalde, “Cyclic permutations realized by signed shifts”, J. Comb. 5 (2014), pp. 1-30.
[2] S. Baldwin. “Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions”,
Discrete Math.. 67 (1987), pp. 111-127.



PATTERNS AND CYCLES IN DYNAMICAL SYSTEMS 5

[3] C.Bandt, G. Keller and B. Pompe, “Entropy of interval maps via permutations”, Nonlinearity. 15 (2002),
pp. 1595-1602.

[4] E. Charlier and W. Steiner. “Permutations and negative beta-shifts”. (2017). arXiv:1702.00652.

[5] S. Elizalde, “Permutations and S-shifts”, J. Combin. Theory Ser. A. 118 (2011), pp. 2474-2497.

[6] S. Ito and T. Sadahiro, “Beta-expansions with negative bases”, Integers 9 (2009), pp. 239-259.

[7] W. Parry, “On the S-expansions of real numbers”, Acta Math. Acad. Sci. Hungar. 11 (1960), pp. 401-416.

[8] S. Elizalde and K. Moore. “Patterns of Negative Shifts and Beta-Shifts”. (2015). arXiv:1512:04479.

[9] J. Fulman. “The Distribution of Descents in Fixed Conjugacy Classes of the Symmetric Groups”, Journal
of Combinatorial Theory. 84 (1998), pp. 171-180.

[10] A. Sarkovskii. “Coexistence of cycles of a continuous map of a line into itself”, Ukrainian Math. J. 16
(1964), pp. 61-71.

[11] W. Steiner, “Digital expansions with negative real bases”, Acta Math. Hungar. 139 (2013), pp. 106-119.

[12] M. Zanin, L. Zunino, O.A. Rosso, D. Papo. “Permutation Entropy and Its Main Biomedical and Econo-
physics Applications: A Review”. Entropy. 14 (2012), pp. 1553-1577.



