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For a permutation π ∈ Sn, the reverse–complement of π, denoted rc(π), is the permuta-
tion in Sn whose ith entry is n+1−π(n+1− i). Equivalently, rc operates on a permutation
by rotating its diagram by a half turn. We say π is centrosymmetric if π = rc(π). A permuta-
tion class C is rc-invariant if C = rc(C). Let Crc2n (resp. Crc) denote the set of centrosymmetric
permutations in C2n (resp. C).

At Permutation Patterns 2016, Alex Woo presented the following open question: For
which rc-invariant permutation classes C is it true that Cn and Crc2n have the same exponential
growth rate? In this presentation, we investigate this question.

Let gr(C) denote the growth rate of Cn, and let grrc(C) denote the growth rate of Crc2n:

gr(C) = lim
n→∞

|Cn|1/n and grrc(C) = lim
n→∞

|Crc2n|
1/n .

(To simplify matters, we will assume these limits exist.) In this notation, the question asks to
determine when grrc(C) = gr(C). A similar project is undertaken in [4], but with involutions
rather than centrosymmetric permutations.

We have found two rc-invariant “two-by-four classes” C for which grrc(C) < gr(C):

• gr(Av(4231, 1324)) = 2 +
√

2 [3], but grrc(Av(4231, 1324)) = 2;

• gr(Av(4321, 2143)) = (3 +
√

5)/2 [2], but grrc(Av(4321, 2143)) = 2.

The rest of this abstract gives more examples of classes C for which grrc(C) 6= gr(C),
including two geometric grid classes; then we give some sufficient conditions for a class to
satisfy gr(C) = grrc(C), such as being ⊕-closed with growth rate less than a certain real
number ξ.

Examples from unions of permutation classes

If D is a permutation class that is not rc-invariant, then D ∩ rc(D) is a proper subclass of
D, but D ∩ rc(D) has the same centrosymmetric permutations as D. If B is a basis for D,
then B∪rc(B) is a basis for D∩rc(D), so Av(B)rc = Av(B∪rc(B))rc. This is why it makes
sense to restrict the scope of the question to rc-invariant classes.
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For instance, Av(312) is not rc-invariant, and Av(312)rc = Av(312, 231)rc. Looking at the
growth rates, we find that grrc(Av(312)) = grrc(Av(312, 231)) = 2 [5] and gr(Av(312, 231)) =
2 [9], whereas gr(Av(312)) = 4 [7].

Furthermore, if D is not rc-invariant, then D∪rc(D) is an rc-invariant class that properly
contains D, but D ∪ rc(D) has the same centrosymmetric permutations as D ∩ rc(D). We
have gr(D ∪ rc(D)) = gr(D), but grrc(D ∪ rc(D)) = grrc(D ∩ rc(D)). We can use this idea
to find many rc-invariant classes of the form C = D ∪ rc(D) for which grrc(C) < gr(C):

• If C = Av(312) ∪ Av(231), then gr(C) = gr(Av(312)) = 4 [7]; however, grrc(C) =
grrc(Av(312, 231)) = 2 [5].

• If C = Av(4123) ∪ Av(2341), then gr(C) = gr(Av(4123)) = 9 [10], but grrc(C) =
grrc(Av(4123, 2341)) = 4.

• If C = Av(4312) ∪ Av(3421), then gr(C) = gr(Av(4312)) = 9 [12], but grrc(C) =
grrc(4312, 3421) = 2 +

√
5.

Examples from geometric grid classes

Seeing the examples above, one may hope that this property, namely that C has a proper
subclass D for which C = D∪ rc(D), is the only obstruction from satisfying grrc(C) = gr(C).
However, this is not the case, as the following examples show.

Let M be a {0, 1,−1}-matrix. The standard figure of M is the set of line segments
determined by the entries of M in the following way: if the entry is 1, replace the entry with
a line segment with positive slope; if the entry is −1, replace it with a line segment with
negative slope; if the entry is 0, put nothing there. For example,(

1 −1
−1 1

)
has standard figure ;(

−1 1
1 −1

)
has standard figure .

Let the geometric grid class of M , denoted Geom(M), be the set of permutations that can
be plotted on the standard figure of M : explicitly, Geom(M) is the set of permutations π
such that there is a set of points (x1, y1), . . . , (xn, yn) lying on the standard figure of M such
that the list x1, . . . , xn is in increasing order while the list y1, . . . , yn has the same relative
order as π(1), . . . , π(n). Note that Geom(M) is a class.

Let C be one of the following two geometric grid classes:

C = Geom

(
1 −1
−1 1

)
or C = Geom

(
−1 1
1 −1

)
.
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Equivalently, C is the class of permutations that can be drawn on a circle (resp. an X).
Then C is rc-invariant, and C has no proper subclass D such that C = D ∪ rc(D) — in fact,
every geometric grid class is atomic [1] (meaning it is not a finite union of proper subclasses).
Furthermore, C is generated by its centrosymmetric elements: for each π ∈ C, there is ρ ∈ Crc
that contains π. However, gr(C) = 2 +

√
2 (see [11] and [6]) and grrc(C) = 2.

Theorem on geometric grid classes

Let M be a {0, 1,−1}-matrix. The cell graph of M is the graph whose vertices are the
non-zero entries of M , where two entries are adjacent if (1) they share a row or column and
(2) there are no non-zero entries between them in their row or column. We say M is a forest
if its cell graph is a forest. Geometric grid classes of forests are discussed in [1, Sec. 3]. We
have proved the following result about such classes.

Theorem 1. If M is a centrosymmetric matrix that is a forest, then grrc(Geom(M)) =
gr(Geom(M)).

Note that the grid matrices for the circle class and the X class are not forests (since the
four non-zero entries are in a cycle), so this theorem does not apply to them.

Results on ⊕-closed or 	-closed classes

Recall that C is said to be ⊕-closed (direct sum–closed) when it satisfies the following prop-
erty: if π, ρ ∈ C, then π ⊕ ρ ∈ C. The definition of 	-closed (skew sum–closed) is similar.
Note that every ⊕-closed or 	-closed class is atomic.

Since an ⊕-closed class can be transformed to a 	-closed class by taking the reverse of
the permutations in the class (and rc commutes with reversing), the following statements for
⊕-closed classes will also apply to 	-closed classes, but we will only state them for ⊕-closed
classes.

Of the several examples C we have found for which grrc(C) 6= gr(C), none of them has
grrc(C) > gr(C), and none of them is ⊕-closed. This leads us to the following conjecture:

Conjecture 2. (a) For any class C, grrc(C) ≤ gr(C). (b) If C is rc-invariant and ⊕-closed,
then grrc(C) = gr(C).

The next two results are partial progress towards proving part (b) of the conjecture.

Proposition 3. If C is rc-invariant and either ⊕-closed or 	-closed, then |Crc2n| ≥ |Cn|, which
implies grrc(C) ≥ gr(C).

Proof. If C is rc-invariant and ⊕-closed, then the function π 7→ π⊕ rc(π) is an injection
from Cn into Crc2n. �
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If part (a) of the conjecture is true, then Proposition 3 implies part (b) of the conjecture.

Let C̃n (resp. C̃) denote the set of ⊕-indecomposable permutations in Cn (resp. C), and let

C̃rc2n (resp. C̃rc) denote the set of centrosymmetric permutations in C̃2n (resp. C̃). Let gr(C̃)
(resp. grrc(C̃)) denote the growth rate of C̃n (resp. C̃rc2n):

gr(C̃) = lim
n→∞

∣∣∣C̃n∣∣∣1/n and grrc(C̃) = lim
n→∞

∣∣∣C̃rc2n∣∣∣1/n .
Theorem 4. Let C be rc-invariant and ⊕-closed, and let ξ ≈ 2.31 be the unique positive
root of x5− 2x4− x2− x− 1. If gr(C) ≤ ξ, then grrc(C) = gr(C). More precisely, each of the
following statements implies the next one:

I. gr(C) ≤ ξ; II. |C̃n| is bounded; III. gr(C̃) is either 0 or 1;

IV. grrc(C̃) ≤ gr(C); V. grrc(C) = gr(C).

The implication I ⇒ II follows from the results in [8, Sec. 5 & 6] on sequences of
⊕-indecomposable permutations. The implications II⇒ III and III⇒ IV are easy.
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