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For a permutation 7w € S,,, the reverse—complement of 7, denoted re(w), is the permuta-
tion in .S,, whose ith entry is n+1—7(n+1—1). Equivalently, rc operates on a permutation
by rotating its diagram by a half turn. We say 7 is centrosymmetric if = = re(m). A permuta-
tion class C is re-invariant if C = rc(C). Let C3¢ (resp. C™) denote the set of centrosymmetric
permutations in Cy, (resp. C).

At Permutation Patterns 2016, Alex Woo presented the following open question: For
which re-invariant permutation classes C s it true that C,, and Ci. have the same exponential
growth rate? In this presentation, we investigate this question.

Let gr(C) denote the growth rate of C,, and let gr"*(C) denote the growth rate of Ci¢:
gr(C) = lim |C|Y"  and  gr™(C) = lim |C5°|*/".
n—oo n—oo

(To simplify matters, we will assume these limits exist.) In this notation, the question asks to
determine when gr"(C) = gr(C). A similar project is undertaken in [4], but with involutions
rather than centrosymmetric permutations.

We have found two rc-invariant “two-by-four classes” C for which gr"¢(C) < gr(C):

o or(Av(4231,1324)) = 2 + /2 [3], but gr¢(Av(4231,1324)) = 2;
o gr(Av(4321,2143)) = (3 + v/5)/2 [2], but gr™(Av(4321,2143)) = 2.

The rest of this abstract gives more examples of classes C for which gr"™*(C) # gr(C),
including two geometric grid classes; then we give some sufficient conditions for a class to
satisfy gr(C) = gr"®(C), such as being @-closed with growth rate less than a certain real
number &.

Examples from unions of permutation classes
If D is a permutation class that is not re-invariant, then D N re(D) is a proper subclass of
D, but D Nre(D) has the same centrosymmetric permutations as D. If B is a basis for D,

then BUrc(B) is a basis for DNre(D), so Av(B)™ = Av(BUrce(B))™. This is why it makes
sense to restrict the scope of the question to rc-invariant classes.

1



For instance, Av(312) is not re-invariant, and Av(312)™ = Av(312,231)™. Looking at the
growth rates, we find that gr™®(Av(312)) = gr"¢(Av(312,231)) = 2 [5] and gr(Av(312,231)) =
2 9], whereas gr(Av(312)) =4 [7].

Furthermore, if D is not rc-invariant, then DUrc¢(D) is an re-invariant class that properly
contains D, but D U r¢(D) has the same centrosymmetric permutations as D N re(D). We
have gr(D Ure(D)) = gr(D), but gr"(D U rce(D)) = gr™(D Nre(D)). We can use this idea
to find many re-invariant classes of the form C = D U re(D) for which gr™(C) < gr(C):

o If C = Av(312) U Av(231), then gr(C) = gr(Av(312)) = 4 [7]; however, gr™(C) =
gre(Av(312, 231)) = 2 [5].

o If C = Av(4123) U Av(2341), then gr(C) = gr(Av(4123)) = 9 [10], but gr"*(C) =
grme(Av(4123,2341)) = 4.

o If C = Av(4312) U Av(3421), then gr(C) = gr(Av(4312)) = 9 [12], but gr"™*(C) =
gre(4312,3421) = 2 + /5.

Examples from geometric grid classes

Seeing the examples above, one may hope that this property, namely that C has a proper
subclass D for which C = DUrc(D), is the only obstruction from satisfying gr"*(C) = gr(C).
However, this is not the case, as the following examples show.

Let M be a {0,1,—1}-matrix. The standard figure of M is the set of line segments
determined by the entries of M in the following way: if the entry is 1, replace the entry with
a line segment with positive slope; if the entry is —1, replace it with a line segment with
negative slope; if the entry is 0, put nothing there. For example,

(_11 _11> has standard figure <>;
-1 1
( 1 _1) has standard figure ><

Let the geometric grid class of M, denoted Geom(M), be the set of permutations that can
be plotted on the standard figure of M: explicitly, Geom(M) is the set of permutations 7
such that there is a set of points (z1,41), ..., (Zn, ys) lying on the standard figure of M such
that the list zq,..., 2, is in increasing order while the list yy,...,y, has the same relative
order as 7(1),...,m(n). Note that Geom(M) is a class.

Let C be one of the following two geometric grid classes:

1 -1 -1 1
C:Geom(_1 1) or C:Geom(1 _1).
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Equivalently, C is the class of permutations that can be drawn on a circle (resp. an X).
Then C is rc-invariant, and C has no proper subclass D such that C = D Ure(D) — in fact,
every geometric grid class is atomic [1] (meaning it is not a finite union of proper subclasses).
Furthermore, C is generated by its centrosymmetric elements: for each m € C, thereis p € C™
that contains 7. However, gr(C) = 2 + /2 (see [11] and [6]) and gr"¢(C) = 2.

Theorem on geometric grid classes

Let M be a {0,1,—1}-matrix. The cell graph of M is the graph whose vertices are the
non-zero entries of M, where two entries are adjacent if (1) they share a row or column and
(2) there are no non-zero entries between them in their row or column. We say M is a forest
if its cell graph is a forest. Geometric grid classes of forests are discussed in [1I, Sec. 3]. We
have proved the following result about such classes.

Theorem 1. If M is a centrosymmetric matrix that is a forest, then gr"™*(Geom(M)) =
gr(Geom(M)).

Note that the grid matrices for the circle class and the X class are not forests (since the
four non-zero entries are in a cycle), so this theorem does not apply to them.

Results on @-closed or ©-closed classes

Recall that C is said to be @-closed (direct sum—closed) when it satisfies the following prop-
erty: if m,p € C, then m @ p € C. The definition of &-closed (skew sum—closed) is similar.
Note that every @-closed or &-closed class is atomic.

Since an @-closed class can be transformed to a ©-closed class by taking the reverse of
the permutations in the class (and rc commutes with reversing), the following statements for
@-closed classes will also apply to ©-closed classes, but we will only state them for é-closed
classes.

Of the several examples C we have found for which gr"¢(C) # gr(C), none of them has
gr'®(C) > gr(C), and none of them is @-closed. This leads us to the following conjecture:

Conjecture 2. (a) For any class C, gr'*(C) < gr(C). (b) If C is rc-invariant and @-closed,
then gr™*(C) = gr(C).

The next two results are partial progress towards proving part (b) of the conjecture.

Proposition 3. If C is rc-invariant and either @-closed or ©-closed, then |C55| > |C, |, which
implies gr™(C) > gr(C).

Proof. 1f C is rc-invariant and @-closed, then the function 7 +— 7 @ re(n) is an injection
from C,, into Ci;,. [



If part (a) of the conjecture is true, then Proposition [3|implies part (b) of the conjecture.
Let C, (resp. C) denote the set of G-indecomposable permutations in C, (resp. C), and let

~§,§ (resp. C’TC) denote the set of centrosymmetric permutations in Cop (vesp. C). Let gr(C)

(resp. gr"®(C)) denote the growth rate of C,, (resp. CL¢):

~ 11/n

Cn

~ 1/n
gr(C) = lim

n—oo

and  gr'®(C) = lim ‘CN;TCL

n—oo

Theorem 4. Let C be rc-invariant and é-closed, and let £ ~ 2.31 be the unique positive
root of 2° — 22 —x? —x — 1. If gr(C) < &, then gr"*(C) = gr(C). More precisely, each of the
following statements implies the next one:

I gr(C) < ¢&; I1. |C,| is bounded; IIL gr(C) is either 0 or 1;
IV. gr"*(C) < gr(C); V. g"(C) = gr(C).

The implication I = II follows from the results in [8, Sec. 5 & 6] on sequences of
@-indecomposable permutations. The implications II = III and III = IV are easy.
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