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1. THE BLOCK NUMBER OF A PERMUTATION

1.1. Definitions. Direct sums and the block decomposition of permuta-
tions appear naturally in the study of pattern-avoiding classes [3] [4].

Let m € S, and 0 € S;,. The direct sum of m and o is the permutation
T @0 € Span defined by

(i), if i <m;
mTdo = . .
o(i—m)+m, otherwise.

For example, if 7 =312 and o = 2413 then 7 & o = 3125746; see Figure

°
o |
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FI1GURE 1. The permutation 312 @ 2413 = 3125746

A nonempty permutation which is not the direct sum of two nonempty
permutations is called @-irreducible. Each permutation 7 can be written
uniquely as a direct sum of @-irreducible ones, called the blocks of 7; their
number, denoted by bl(7), is the block number of 7. Equivalently,

bl(m)={1<i<n: (Vj<i)n(j) <i}|

1.2. Counting 321-avoiding permutations by block number. Recall
the n-th Catalan number, C), := %(2:), and its generating function c(x) :=
Yo Cpa™. For each 0 < k < n, the n-th k-fold Catalan number Cy,j, is the
coefficient of z™ in (zc(x))*. These numbers are also called ballot numbers,
and form the Catalan triangle [I5, A009766].

A permutation 7 € S, is 321-avoiding if the sequence (7(1),...,7(n))
contains no decreasing subsequence of length 3. Denote by S,(321) the set
of 321-avoiding permutations in S,.
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Proposition 1.1. [I] For any fized positive integer k, the ordinary generat-
ing function for the number of 321-avoiding permutations in S, with exactly
k blocks is (zc(x))F.

Recall the descent set of a permutation 7 € S,
Des(m):={i: w(i)>nw(i+1)},
and let
ldes() := max{i : ¢ € Des(7)}
be the last descent of 7, with ldes(w) := 0 if Des(7) = @.
Combining Proposition |1.1{ with results from [8], 18] one deduces

Corollary 1.2. For every positive integer n

Z qbl(ﬂ') _ Z qnfldes(ﬂ') )

7eSn (321) 7S, (321)

A multivariate refinement of Corollary [I.2] is presented in this paper;
see Theorem [2.0] below. A new example of a Schur-positive set of per-
mutations follows, addressing a long standing open problem of Gessel and
Reutenauer [I1] and a more recent one by Sagan and Woo [14].

2. MULTIVARIATE EQUI-DISTRIBUTION
2.1. A bijection.

Definition 2.1. For 1 < k < n denote
Bl j, = {7 €S5,(321): bl(n) =k}

and

Lk ={meSy(321): ldes(n ') = k}.

A left-to-right-maxima-preserving bijection from Bl j, to Ly, ) is pre-
sented in this Subsection.

Definition 2.2. Define maps f, : S$,(321) — S,(321), recursively, for all
n > 1. For n =1 the definition is obvious, since S1(321) consists of a unique
permutation. For 7 € §,(321), n > 2, the recursive definition of f, ()
depends on k := bl(7) and on the locations of the letters n— 1 and n in 7.
Distinguish the following three cases:
Case A: n71(n) =n, i.e., nis in the last position.
Then: delete n, apply fn-1, and insert n at the last position.
Case B: 77 1(n-1) <77 1(n) <n, i.e., n is to the right of n—1 but not
in the last position.
Then: delete n, apply f,-1, insert n at the same position as in T,
and multiply on the left by the transposition (n -k —-1,n k).
Case C: 7 '(n) <n7t(n-1), i.e., n -1 is to the right of n (and must
be the last letter, since 7 is 321-avoiding).
Then: let 7" := (n - 1,n)n, define f,(7") according to case A above,
and multiply it on the left by the cycle (n-k,n—-k+1,...,n).
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Remark 2.3. This recursive definition yields a sequence of permutations
(Tns Tp=1y...,m1), starting with 7, = 7. For each 2 <1i < n, mi_1 € S;_1 is
obtained from m; € S; by deleting i from m; (in cases A and B) or by deleting
i from (i—1,i)m; (in case C). To recover fi(m;) from fi_1(mi—1), the letter i
is inserted exactly where it was deleted (for example — in the last position,
in cases A and C), and then the permutation is multiplied, on the left, by a
suitable cycle.

Example 2.4. Let m = 31254786 € Sg, so that bl(w) = 3 and ltrMax(7) =
{1,4,6,7}. The recursive process is illustrated by the following diagram,
where the arrow 7; — m;_1 is decorated by the case and by the corresponding
cycle.

7 =g = 31254786 —2— 7 = 3125476 ———» g = 312546
(45) (4567)
A re=31254 — sy = 3124 5 1y = 312
(345)

Y =21 =1,

(23) (12)

=1 2 pim) =21 fi(m) =312 — fi(my) = 3124

345
&), f5(ms5) = 41253 — f(me) = 412536

(4567), f7(m7) = 5126374 @), fa(m) = fs(ms) = 41263785.

Note that here one has ldes(fs(7)™') = 5 = 8 —=bl(7) and ltrMax( fg(7)) =
{1,4,6,7} = ltrMax(7).

Our main claim is
Theorem 2.5. For each 1 < k < n, the map f, defined above is a left-to-
right-maxima-preserving bijection from Bl onto Ly, ,_.

The complete proof of Theorem is given in the full paper version [I].

2.2. Main theorem. Let
ItrMax(7) := {i : w(¢) = max{m(1),...,7(i)}}

be the set of left-to-right mazima in a permutation w. For every J ¢ [n] let
x” := [ z;. Theorem implies
ieJ
Theorem 2.6. For every positive integer n
XltrMax(ﬂ"l) qbl(w) _ Z XltrMax(w’l) qn—ldes(w)'
TSR (321) 7Sy (321)
Remark 2.7. Theorem[2.6] is reminiscent of the classical Foata-Schiitzenberger

Theorem
Z XDes(w_l)qinV(ﬂ') _ Z XDes(fr_l)qmaj(ﬂ')'

TeSH TeSy
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Corollary 2.8. For every positive integer n,

Z XDes(7r)t7r’1 (n)qbl(ﬂ') - Z XDes(7r)tTr’1 (n)qn—ldes(ﬂ’l).
7eS, (321) 7eS, (321)

3. AN APPLICATION TO SCHUR-POSITIVITY

Given any subset A of the symmetric group S, define the quasi-symmetric
function
Q(A) = Z fn,Des(ﬂ)a
meA
where Des(m) := {i: w(i) > w(i+1)} is the descent set of = and F, p (for

D c[n-1]) are Gessel’s fundamental quasi-symmetric functions; see [I] for
more details. The following long-standing problem was first posed in [11].

Problem 3.1. For which subsets A ¢ S,, is Q(A) symmetric?

A symmetric function is called Schur-positive if all the coefficients in its
expansion in the basis of Schur functions are nonnegative. Determining
whether a given symmetric function is Schur-positive is a major problem in
contemporary algebraic combinatorics [17].

Call a subset A ¢ S,, Schur-positive if Q(A) is symmetric and Schur-
positive. Classical examples of Schur-positive sets of permutations include
inverse descent classes [10], Knuth classes [10], conjugacy classes [I1, Theo-
rem 5.5], and permutations with a fixed inversion number [2, Prop. 9.5].

New constructions of Schur-positive sets of permutations were described
in 9] and [14]. Inspired by these examples, Sagan and Woo raised the
problem of finding Schur-positive pattern-avoiding sets [14].

The goal of this paper is to present a new example of a Schur-positive set
of permutations which involves pattern-avoidance: the set of 321-avoiding
permutations having a prescribed number of blocks. We shall state that
more explicitly.

For an integer partition A of n, let x* and sy be the irreducible S,-
character and the Schur function indexed by A, respectively. Recall the
Frobenius characteristic map ch, from class functions on §,, to symmetric
functions, defined by ch(x?) = sy and extended by linearity. Corollary
implies

Theorem 3.2. For any 1<k <n, the set Bl = {m € S,(321) | bl(7) = k}
is Schur-positive. In fact, for 1<k<n-1

Q(Bln ) = Ch(x(n—l,n—k) igff"“‘l)

while for k=n

Q(Blyp) = ch(x™) = 50y
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4. FINAL REMARKS

Time permitting, we shall also discuss applications and implications of
the above results to Hilbert series of certain polynomial rings and to the
search for Schur-positive statistics on pattern-avoiding sets.
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