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Introduction

Let π ∈ Sn and let k ≤ n. Consider all
(
n
k

)
restrictions of π to k entries, π(a1), . . . , π(ak) where

a1 < a2 < · · · < ak. The relative ordering of such k values induces a pattern σ ∈ Sk as follows. The
k-pattern σ is the unique permutation in Sk such that σ(i) < σ(j) iff π(ai) < π(aj) for every i and j.
For example, the restriction of π = 4 1 2 5 3 to the marked entries induces the 3-pattern σ = 2 1 3.

For each σ ∈ Sk we denote by Nσ(π) the number of times it occurs as a k-pattern in π. The
density of σ in π is defined as the proportion Pσ(π) = Nσ(π)/

(
n
k

)
, so that Pσ(π) ∈ [0, 1]. The

k-profile of π is the k!-dimensional vector of all k-pattern densities,

Pk(π) = (Pσ(π) )σ∈Sk ∈ Rk!

When π ∈ Sn is sampled uniformly at random, we denote its densities and k-profile by Pσn and Pkn
respectively.

Pattern densities in permutations give rise to extremal questions [31, 1, 15, 30, 8, 2, 33], and
play a role in the construction of limiting objects for permutations [27, 18, 14, 23], and in permu-
tation property testing [19, 26]. The case where some pattern densities vanish [7, 25, 29] is studied
extensively. This extended abstract focuses on the study of pattern densities in random permuta-
tions [9, 12, 5, 6, 8, 21, 17], which has applications to non-parametric statistics [34, 22, 16, 4, 11, 3].

A first observation is that each entry in the expected profile, E[Pkn], is 1/k! regardless of n. One
can also establish a law of large numbers, that is, in probability

Pkn
n→∞−−−−→ Uk :=

(
1

k!
, . . . ,

1

k!

)
It is hence interesting to understand how the k-profile deviates from this limit. What is the order of
magnitude of (Pkn−Uk) as n grows? What directions in Rk! are typical of this vector? Does it have
a natural decomposition into lower-dimensional components? What is the shape of the distribution
when properly normalized?

We study these questions using group representations of Sk. Although developed independently,
our work extends the discussion by Janson, Nakamura and Zeilberger in Section 4 of [21]. In
particular, we address the question in its closing paragraph, on the emerging general structure.

Normalization

We first recall some notions concerning representations of finite groups and the classification of the
simple representations of the symmetric group Sk [24, 13, 32].

A d-dimensional real representation of a finite group G is a map ρ from G to the linear group
of Rd, such that ρ(g) ◦ ρ(h) = ρ(gh) for every g, h ∈ G. A represnetation ρ is simple if there is no
proper subspace V ⊂ Rd such that ρ(g)V = V for every g ∈ G. Two representations ρ, ρ′ of G are
similar is there exists a linear map τ such that ρ′(g) = τ−1 ◦ ρ(g) ◦ τ for every g ∈ G.

The simple representations of the symmetric group Sk up to similarity are in one-to-one corre-
spondence with integer partitions of k. A partition λ ` k is given by integers λ1 ≥ λ2 ≥ · · · ≥ λ` ≥ 1
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such that λ1 + · · · + λ` = k, and the corresponding simple representation is denoted ρλ, of dimen-
sion dλ. We note that

∑
λ`k d

2
λ = k!.

We use the simple representations of Sk to decompose Rk!. Suppose that each representation ρλ

is given as dλ-by-dλ matrices (Rλ(σ) )σ∈Sk in its similarity class. For r < k consider the subspace

Vr := span
{
Rλ
ij |

λ`k, λ1=k−r
1≤i,j≤dλ

}
where Rλ

ij =
(
Rλij(σ)

)
σ∈Sk

∈ Rk!

Then Rk! = V0 ⊕ · · · ⊕ Vk−1 where the direct summands are well-defined, independent of the choice
of Rλ in their similarity classes. They are also mutually orthogonal with respect to the the inner
product 〈u,v〉 =

∑
σ∈Sk uσvσ.

We apply this decomposition to the random k-profile. Denote by Πr : Rk! → Vr the orthogonal
projections on those subspaces.

Pkn = Π0Pkn + Π1Pkn + · · ·+ Πk−1Pkn

The first supspace V0 is spanned by the 1-dimensional trivial repsentation ρ(k)(σ) = [1]. Since∑
σ∈Sk Pσn = 1 deterministically, Π0Pkn = Uk = E[Pkn] as noted above. Consequently, the other

terms satisfy E[ΠrPkn] = 0, for every n ≥ k > r > 0, so that ΠrPkn → 0 in probability in Rk!. The
following theorem determines their asymptotic order of magnitude.

Theorem 1. For every r < k

nr E
[
‖ΠrPkn‖2

]
n→∞−−−−→ σkr

for some 0 < σkr <∞.

We call ΠrPkn the order r component of the k-profile, and deonte the normalized k-profile by

P̃kn =

k−1∑
r=0

nr/2 ΠrPkn

Another feature of this decomposition is that the normalized components are asymptotically
uncorrelated. This is stated in the following theorem in terms of the cross-covariance matrix of such
two vectors.

Theorem 2. For every r < s < k

E

[ (
nr/2 ΠrPkn

)(
ns/2 ΠsPkn

)T ] n→∞−−−−→ 0

in the normed space Rk!×k! .

Diagonalization

Theorem 2 already suggests a partial diagonalization of the normalized k-profile distribution. One
may proceed by decomposing every component nr/2ΠrPkn according to some orthogonal basis of Vr,
so that the covariance matrix of all the k! resulting components is asymptotically diagonal. Such a
procedure is sometimes called decorrelation or principal component analysis (PCA).

It turns out that such a secondary decomposition is again provided by simple representations
of Sk. Let R = {Rλ}λ`k be matrix representations in the similarity classes of all ρλ as before. We
consider all their matrix elements,

rλij =
√

dλ
k! Rλ

ij where Rλ
ij =

(
Rλij(σ)

)
σ∈Sk

∈ Rk!
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If the representations R = {Rλ}λ`k are all unitary with respect to the usual inner products in Rdλ
then {rλij} form an orthonormal basis of Rk!. This means that any vector v ∈ Rk! is written in this
basis with the following coefficients.

UR v =
( 〈

rλij ,v
〉 )

λ`k, 1≤i,j≤dλ

The following theorem indicates that such matrix elements should be used to diagonalize the asymp-
totic distribution of the k-profile.

Theorem 3. Let k ≤ 6. There exist unitary simple representations R = {Rλ}λ`k, such that

E

[(
UR P̃kn

)(
UR P̃kn

)T] n→∞−−−−→ Σ

where Σ ∈ Rk!×k! is diagonal with positive entries.

Extending Theorem 3 to every k ∈ N is work in progress. The discovery of these bases and the
verification of the theorem were done by computer-aided exploration. The matrix representations Rλ

that come up are not those of any of the classical constructions: Young’s semi-normal form, Young’s
orthogonal form, or Young’s natural form. It would be interesting to understand how they are
related. Thus we also hope to resolve some degrees of freedom in our choice of matrices for certain
representations of S6.

Our treatment parallels the framework of spectral analysis of statistical data defined on non-
abelian groups, as introduced by Diaconis [10, Section 8B]. An important practical issue that rises
there is the arbitrary choice of Fourier bases, which might depend on matters of interpretation and
convenience. The bases described here may provide an answer in the case of Sk, at least when the
samples relate to occurrences of ordering types, and are associated with the ordering of a larger
sequence.

Ditribution

The next challenge would be to understand the asymptotic shape of the profile’s distribution. By
the results of Janson, Nakamura and Zeilberger [21], the first order component

√
nΠ1Pkn is asymp-

totically multi-normal in the (k − 1)2-dimensional space V1.
In this case, that corresponds to the partition λ = (k − 1, 1), we can characterize the unitary

representation that appears. It is given by Rλ(σ) = UTAσU , where Aσ ∈ Rk×k permutes the
standard basis of Rk according to σ. The matrix U ∈ Rk×(k−1) is semi-orthogonal, where Uij is a
polynomial of degree j evaluated at i. This yields an orthonormal basis of V1 in which the asymptotic
distribution is given by (k − 1)2 independent normal variables.

As for higher order components, some scalar projections 〈v,Pkn〉 were studied in the statistical
literature [16, 4, 11, 3]. In general, if v ∈ Vr then 〈v,Pkn〉 is a U -statistic of degree k, degenerate
to order r [28]. We omit the details of this description. It means that after scaling by nr/2 this
scalar projection has the asymptotic distribution of a sum of degree r polynomials in independent
Gaussians [20].

It is also interesting to understand the joint distribution of several profile projections of order
greater than one. It seems that the decomposition according to the matrix elements {rλij} may be
useful in studying those.

Applications

We briefly mention a few interesting special cases, as consequences of the structure of the profile’s
distribution described above. Some of them are related to well-studied permutation statistics.
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1. λ = (1, 1): This 1-dimensional representation, sign : S2 → [±1], corresponds to the inversion

number of π ∈ Sn, or to Kendall’s τ [22]. It is asymptotically normal of order 1/
√
n.

〈R1+1
11 ,Pk(π)〉 = τ(π) = P12(π)− P21(π)

2. λ = (2, 1): In this case d2+1 = 2 and a suitable two-dimensional representation is generated by

R2+1(321) =

[
−1 0
0 1

]
R2+1(132) =

[
1/2

√
3/2√

3/2 −1/2

]
The four limit distributions are independently normal, of order 1/

√
n, and the proportion

between their variances is as in [ 25 5
5 1 ].

The upper left element 〈R2+1
11 ,Pk〉 is equivalent to Spearman’s ρ [34], up to adding 1

4R
1+1+1
11

which has negligible order 1/n. The lower right one 〈R2+1
22 ,Pk〉 corresponds, up to constants,

to the count of monotone triplets P123 + P321.

3. λ = (1, 1, 1): The alternating representation, sign : S3 → [±1], yields Fisher and Lee’s statistic
for circular rank correlation [11], or Gepner’s statistic [35]:

〈R1+1+1
11 ,Pk〉 = P123 + P231 + P312 − P132 − P213 − P321

It has order 1/n, and its limiting distribution was studied [11].

4. λ = (1, . . . , 1): Extending the cases k = 2, 3, the alternating representation of Sk yields

〈R1+···+1
11 ,Pk〉 =

(
# even
k-patterns − # odd

k-patterns

)
/
(
n
k

)
Its distribution was mentioned as being particularly narrow, of order n−(k−1)/2 [21]. Since
λ1 = 1 we can see it is indeed the single most narrow projection of the k-profile.

5. λ = (3, 1): This case yields d23+1 = 9 projections, with a multi-normal axis-aligned distribution,

of order 1/
√
n. The representation is generated by the matrices

R3+1(1243) =

[
0.8

√
0.2 −0.4√

0.2 0
√
0.8

−0.4
√
0.8 0.2

]
R3+1(3142) =

[
0 0 −1
0 −1 0

1 0 0

]
The variances are proportional to the rank-1 matrix

[
441 147 21
147 49 7
21 7 1

]
.

6. λ = (2, 2): This representation has the same 2-by-2 matrices as (2, 1) above, with R2+2(1243) =

R2+1(321) and R2+2(3142) = R2+1(132). This yields four uncorrelated statistics of degenrate
order 1/n. The lower right element was proposed by Bergsma and Dassios [3] as τ?(π),
a consistent test of independence for paired samples.

τ? = 2
3 〈R

2+2
22 ,Pk〉 = P1234 + P1243 + P2134 + P2143 + P3412 + P3421 + P4312 + P4321 − 1

3

It can be shown by our decomposition that τ? is in fact asymptotically equaivalent to classical
independence tests by Hoeffding [16] and Blum–Kiefer–Rosenblatt [4]. They only differ by
order n−3/2 terms that come from the representations (2, 2, 1) and (3, 2, 1) respectively. Král’
and Pikhurko [27] show that it follows from several projections of the asymptotic 4-profile.

7. λ = (2, 1, 1): To complete the treatment of k = 4, let

R2+1+1(1243) =
[

0 −1 0
−1 0 0
0 0 −1

]
R2+1+1(3142) =

[
0 0 −1
0 +1 0
+1 0 0

]
This representation has a nice form of signed permutation matrices. Each of the nine order 1/n
statistics counts the occurrences of some four 4-patterns minus those of another four.
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