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We first introduce set partitions and the notion of Klazar-type set partition pattern

avoidance.

Definition. A set partition is a partition of the set [n] for some n into any number of
nonempty sets, where the order within the partition is irrelevant. We call these sets blocks
of the partition. The number of set partitions of [n] is the Bell number Bn.

Often, when writing specific set partitions, we will write the partition [n] = S1 ∪ · · · ∪ Sk
as S1/ · · · /Sk, where the Si are in increasing order of smallest element, and are written
as strings of numbers from least to greatest; for example, [5] = {2, 4} ∪ {1, 3, 5} would be
written 135/24. To carry over our notions of avoidance, we define pattern containment on
set partitions.

Definition. Let π and π′ be set partitions of [n] and [m], respectively. We say that π con-
tains (respectively avoids) π′ if there exists (respectively does not exist) a strictly increasing
function f : [m]→ [n] such that for any i, j ∈ [m], i and j are in the same block of π′ if and
only if f(i) and f(j) are in the same block of π.

(Note that this is distinct from RGF -type set partition avoidance as studied in [5], where,
for example, 145/23 would avoid 12/34, as in RGF -type containment the order of blocks
must be preserved.)

We will be concerned with the asymptotics of pattern classes of set partitions. In analogy
to the permutation case, where all pattern classes grow as n! or are bounded above by an
exponential, we find that we can similarly classify the growth rate of pattern classes of set
partitions to within an exponential factor. Specifically, we have the following.
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Theorem 1. Let P be a nonempty pattern class of set partitions, and as usual let Pn be
the partitions of [n] in P . Then one of the following is true.

1. P contains every set partition; that is, |Pn| = Bn.

2. There exists a positive integer d and real constants c2 > c1 > 0 such that for every n,

cn1n
n(1− 1

d) ≤ Pn ≤ cn2n
n(1− 1

d)

To explain when the pattern class falls into a particular asymptotic range, we relate
partitions to tuples of permutations and define the permutability statistic.

Definition. Let σ1, . . . , σd ∈ Sn be permutations. We then define [σ1, . . . , σd] to be the
set partition of [(d + 1)n] containing n blocks B1, . . . , Bn, where Bi = {i, n + σ1(i), 2n +
σ2(i), . . . , dn+ σd(i)}.

Definition. Let π be a set partition of [n]. The permutability of π, denoted pm(π), is the
minimal d such that there exists m ∈ Z+ and σ1, . . . , σd ∈ Sm such that [σ1, . . . , σd] contains
π.

We now have the terminology to describe which pattern classes correspond to which d in
Theorem 1: d is the smallest permutability of a set partition not in P . (We ignore the case
where this is 0–this corresponds also to d = 1.)

We now outline the methods of proof of the lower and upper bounds. For the lower
bound, note that by assumption, all partitions of permutability d − 1 are in P . This will
include all partitions of the form [σ1, . . . , σd−1]. On [dn], there are (n!)d−1 such partitions,
which already gives the desired lower bound.

As usual, the upper bound is far more difficult; we will simply describe some of the
techniques and lemmas involved. It suffices to show the result for classes given by avoiding
one element [σ1, . . . , σd], as every pattern class with the correct asymptotic is contained in
such a class.

As with permutations, where often it is necessary to generalize to 0−1-matrices, we may
generalize from set partitions to ordered hypergraphs. Just as 0 − 1 matrices correspond
to bipartite graphs, with permutation matrices corresponding to matchings or 1-regular
bipartite graphs, set partitions correspond to 1-regular ordered hypergraphs. In particular,
the edges of a 1-regular ordered hypergraph give a partition of the vertex set [n].

This implies that we should look for some Füredi-Hajnal type bound on hypergraphs
that avoid a hypergraph of the desired form. We first make several definitions.

Definition. The ordered hypergraph G contains (respectively avoids) the ordered hyper-
graph H if there exists (respectively does not exist) an order-preserving injection iV :
V (H) → V (G) and and an injection iE : E(H) → E(G) that are compatible, in the sense
that if v ∈ e ∈ E(H), then iV (v) ∈ iE(e). A d-permutation hypergraph is a hypergraph
corresponding to some set partition [σ1, . . . , σd−1].
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Note that the definition ensures that a d-permutation hypergraph is d-uniform. We may
now state our Füredi-Hajnal type lemma.

Lemma 1. For an ordered hypergraph G, define i(G) :=
∑

E∈E(G)

|E|. Let H be a d-permutation

hypergraph. Then there exists a constant c such that for all n ∈ Z+ and ordered hypergraphs
G on [n] avoiding H,

i(G) ≤ cnd−1.

The proof of the lemma is a technical induction, first proving a stronger statement for
t-uniform hypergraphs and then using that to obtain the result for general graphs. Note
that Lemma 1 is a generalization of two results of Klazar and Marcus in [4], one of which is
simply the d = 2 case of Lemma 1, and the other deals with d-dimensional 0 − 1 matrices,
which give a subset of the cases when G is d-uniform.

Remark. This result is quite interesting in its own right, and prompts the question of de-
termining asymptotics of max

G avoids H
V (G)=[n]

i(G) for various H (or to generalize to pattern classes of

ordered hypergraphs). From Lemma 1 it is not difficult to see that if H is 1-regular, cor-
responding to some set partition π, then this is within a constant on either side of npm(π).
For non-1-regular hypergraphs, the answer may be more complicated; for example, if G is
restricted to be a graph, Klazar shows in [3] that it is possible to achieve a function that
grows very slightly faster than linearly.

From Lemma 1 it is a routine recursive derivation that the number of ordered hypergraphs
G on [n] that avoid some d-permutation hypergraph H is bounded above asymptotically by

c′n
d−1

for some constant c′. Unfortunately, this is far greater than the desired nn(1−
1

d−1), as
we are now considering general hypergraphs and not just set partitions.

However, a final trick finishes the solution; given a set partition in the form of a 1-regular
hypergraph G on [n], we may divide the n vertices into s intervals of size n

s
. For each edge

E of the original graph, we can create an edge E ′ of the new graph containing exactly those
vertices corresponding to intervals in which E contained at least one vertex. (We then delete
duplicate edges.) If the resulting graph is G′, we know that we only have c′s

d−1
choices for

G′. Then, we may bound how many set partitions correspond to a particular choice of G′.
Optimizing for s leads after some algebra to the desired bound.

We may now apply this result to permutation-tuple pattern avoidance, which we now
define.

Definition. Fix d ∈ Z+. Let σ1, . . . , σd ∈ Sn and σ′1, . . . , σ
′
d ∈ Sm be permutations. Then

the d-tuple (σ1, . . . , σd) contains (respectively avoids) the d-tuple (σ1, . . . , σd) if there exist
(respectively do not exist) indices i1, . . . , im ∈ [n] with i1 < · · · < im satisfying the property
that for any j, σj(i1) · · ·σj(im) has the same relative ordering as σ′j(1) · · · σ′j(m).

In other words, a d-tuple T1 contains another d-tuple T2 if and only if each permutation
in T1 contains the corresponding permutation in T2 at the same location.
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It is not difficult to see that d-permutation-tuple avoidance is equivalent to set partition
avoidance where the set partitions are restricted to the form [σ1, . . . , σd]. That is, [σ1, . . . , σd]
contains [σ′1, . . . , σ

′
d] if and only if (σ1, . . . , σd) contains (σ′1, . . . , σ

′
d).

This immediately gives an upper bound on the number of elements of Sdn that avoid a
particular d-tuple (σ1, . . . , σd): it is at most the number of set partitions of [(d + 1)n] that

avoid [σ1, . . . , σd]. By our earlier result this is at most cnn

(
d2−1

d

)
n

for some constant c.
Intriguingly, the lower bound in this case also holds (this follows quickly from results in

[1])–that is, the number of elements of Sdn that avoid (σ1, . . . , σd) is at least cnn

(
d2−1

d

)
n

for
some constant c > 0. In sum, we have the following result.

Theorem 2. Fix d,m ∈ Z+, and σ1, . . . , σd ∈ Sm. For a particular n, let Sdn(σ1, . . . , σd) be
the set of d-tuples of permutations in Sn that avoid (σ1, . . . , σd). Then there exist constants
c2 > c1 > 0 so that for all n,

cn1n

(
d2−1

d

)
n ≤

∣∣Sdn(σ1, . . . , σd)
∣∣ < cn2n

(
d2−1

d

)
n
.

When d = 1, Theorem 2 simply returns Stanley-Wilf. For higher d this is highly nontrivial
even in simple cases–for example, there does not seem to be a closed form for the number
of pairs of permutations in Sn that avoid (12, 12). Even the asymptotics here are not well

bounded: by Theorem 2 we know that it will be bounded within an exponential of (n!)
3
2

(note that in any of these theorems, by Stirling Approximation, we can replace nn by n!),
but the base of that exponential factor is only currently known (to the author’s knowledge)
to be bounded between 1 and 3

√
3(3 log 3− 4 log 2) ≈ 3.76, as proven in [2]. (This special

case is the sequence of number of pairs (σ1, σ2) ∈ S2
n with σ1 ≤ σ2 in the weak Bruhat order.)

There are several questions that remain here; most immediately, in the case of d-tuples,
we have not shown any classification of growth rates of pattern classes like the one we
showed in the set partition case. Of course, the pattern class of every d-tuple (that is, basis
size 0) grows as (n!)d (or, to use the kinds of expressions above, within exponentially of
ndn); Theorem 2 shows that any pattern class of d-tuples of permutations with exactly one

(nontrivial) basis element grows within exponentially of n

(
d2−1

d

)
n
. Other growth orders are

possible; we can take the product of a pattern class of d1-tuples and a pattern class of d2-
tuples to get a pattern class of d1 + d2-tuples. This immediately implies that we may obtain

growth rates within exponential of ncn where c = d−
k∑
i=1

1

ni
, where k, n1, . . . , nk ∈ Z+ with

n1 + · · ·+ nk ≤ d. Are there any other posible growth rates? It is not clear what we might
expect from, for example, an arbitrary pattern class of pairs of permutations (so d = 2) with
basis size 2.

The permutability statistic of partitions does not seem to be distributed according to
other known statistics of partitions. Determining this distribution might help specify the
constants in Theorem 1, as Pn is bounded below by the number of set partitions of [n]
permutability at most d− 1.
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