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In his seminal work The Art of Computer Programming [2], Knuth was the first to consider
a number of classic data structures from the point of view of the permutations they could
produce from the identity permutation, or equinumerously, the permutations which the
data structure can sort. Famously, he noticed that the permutations obtainable using a
single stack are exactly those which avoid the pattern 312. Knuth posed the same question
for a number of other data structures, in particular, he asked how many permutations of
each length can be obtained using a double ended queue (deque) or two stacks in parallel
(tsip).

In [1], Albert and Bousquet-Melou characterised the counting function P (t) for tsip-
sortable permutations in terms of a generating function Q(u, a) for weighted quarter plane
loops. This solves the enumeration problem for tsip-sortable permutations in the sense
that P is characterised by a system of functional equations. Using a similar method to
Albert and Bousquet-Melou, we present a solution to the problem of enumerating deque-
sortable permutations. Our solution takes the form of a simple relationship between the
counting function D(t) for deque-sortable permutations and the counting function P (t).

The allowed operations for two stacks in parallel (left) and a deque (right)

A deque-sortable or tsip-sortable permutation can be classified by its operation sequence,
that is, a sequence of moves I1, I2, O1, O2 which sorts the permutation. We will call an
operation sequence for a double ended queue a deque-word, and we call an operation
sequence for two stacks in parallel a tsip-word. Since many operation sequences correspond
to the same permutation, we proceed by defining canonical deque-words, which are in
bijection with the permutations they sort.

A deque-word is called canonical if it has the following properties:
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1. The subwords I1O2 and I2O1 are forbidden

2. Any subword of the operation sequence which is a tsip-word begins with I1.

3. When the deque contains at most 1 element only the moves I1 and O1 are allowed,
not I2 or O2.

This mirrors the characterisation of canonical tsip-words given by Albert and Bousquet-
Melou, which are defined by satisfying the first two conditions.

By enumerating canonical deque-words, we derive the following relationship between the
counting function D(t) for deque-sortable permutations, and the counting function P (t)
for tsip-sortable permutations:

2D(t) = 2 + t+ 2Pt− 2Pt2 − t
√

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt.

Despite the fact that both problems are in some sense solved, it is still not proven that
the radii of convergence tp of P (t) and td of D(t) are equal. From the expression above,
we can immediately deduce that if

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt > 0

for all t ∈ [0, tp), then td = tp. It is conjectured, however, that the expression above is equal
to 0 at t = tp, so it is not possible to prove the inequality by simply approximating the
left hand side. Since the function P has a simple characterisation in terms of a generating
function Q(u, a) for weighted quarter plane loops, the question of whether td = tp can be
reduced to questions about Q.

Define a quarter plane loop to be a lattice path in the nonnegative quadrant which starts
and ends at (0, 0). A weighted quarter plane loop is then defined by attaching a weight a
to NW and ES corners. Then the generating function Q(u, a) for weighted quarter plane
loops is given by

Q(u, a) =
∑

qn,mu
nam,

where qn,m is the number of quarter plane loops with length 2n which contain m weighted
corners. Albert and Bousquet-Melou showed that the generating function P (t) is charac-
terised by the equation

Q

(
1

P
− 1,

tP 2

(1− 2P )2

)
= 2P − 1.

We show that the following three conjectures from [1] imply that td = tp.

Conjecture 1. The series Q(a, u) is (a+ 1)-positive. That is, Q takes the form

Q(a, u) =
∑
n≥0

unPn(a+ 1),

where each polynomial Pn has positive coefficients.
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Conjecture 2. the radius of convergence ρQ(a) of Q(a, ·) is given by

ρQ(a) =


1

(2 +
√

2 + 2a)2
, if a ≥ −1/2,

−a
2(a− 1)2

, if a ∈ [−1,−1/2].

Conjecture 3. The series Qu(a, u) = ∂Q
∂u

is convergent at u = ρQ(a) for a ≥ −1/3.

Finally, using the solutions to these two problems, we have computed over 1000 coefficients
of each of the series P (t) and D(t). We find that the coefficients of P (t) behave as
κp · µn · nγ, where µ = 8.281402207 . . . and γ ≈ −2.473, while the coefficients of D(t)
behave as κd ·µn ·n−3/2. In particular, we find that the growth rates of these two sequences
agree to 10 significant digits, adding credence to the conjecture that tp = td.
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