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Mansour and Shattuck [6] have shown that exactly 9 classes of permutations (up to symmetry)
avoiding triples of patterns of length 4 have the enumeration sequence A033321 [7] that is the
binomial transform of Fine’s sequence. Up to symmetry, these classes are Av(Ti), i = 1, . . . , 9,
where

T1 = {2134, 3124, 4123}, T2 = {1234, 1324, 1423}, T3 = {2134, 1324, 1423}
T4 = {3124, 2314, 2413}, T5 = {3214, 2314, 2413}, T6 = {2143, 1243, 1342}
T7 = {1243, 1342, 1432}, T8 = {2143, 3142, 4132}, T9 = {2143, 2413, 3142}.

Four of these classes were separately shown previously to be enumerated by this sequence,
while the five others are new. In chronological order of publication, see [1, Lemma 10] for T2, [4,
Example 6.4] for T9, [9, Theorems 3.4 and 3.5] for T4, and [3, Section 3.3] for T8.

The same sequence also enumerates unimodal inversion sequences [8]. An inversion sequence
(subexcedant sequence, a reversal of a Lehmer code) is a sequence e = e1e2 . . . en (n > 0) such that
ei ∈ [0, i− 1] for all i.

We generalize these findings in two different ways.

• For sets T1, T2, T3, T8, we find encodings of all permutations by inversion sequences so that the
inversion sequences corresponding to the set Av(Ti) of Ti-avoiders (i = 1, 2, 3) are unimodal.
This extends our PP 2016 results [5] for T2 and T8.

• We use the above encodings of Av(Ti), i = 1, 2, 3, to generalize the Wilf-equivalence of the
Ti’s to a Wilf-equivalence of families of similarly related sets of patterns of any size, obtained
by inflating a certain entry of each permutation in Ti by the same block. We also conjecture
similar generalizations for Ti, i = 4, 5, 6, 7, 8.

1 Bijections from inversion sequences

Let SEn =
∏n
i=1 [0, i− 1] denote the set of all inversion sequences of length n, and let SE =

∪n>0SEn. Similarly, let UISn be the subset of unimodal strings in SEn, and let UIS be the subset
of unimodal strings in SE. Given a permutation π, let (i, j)-augmentation of π, denoted π(i, j), be
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the permutation obtained by adding 1 to all letters m of π such thatm > j and inserting letter j to
be in position i. Equivalently, π(i, j) is the permutation π ′ such that π ′(i) = j and the pattern of π ′

with j deleted is π. We also let

Aug(π, i, j) = {π(i,k) : 1 6 k 6 |π|+ 1, k 6= j}.

For example, 123(1, 2) = 2134, 123(1, 3) = 3124, 123(1, 4) = 4123, so Aug(123, 1, 1) = {2134, 3124, 4123}.
Thus,

T1 = Aug(123, 1, 1), T4 = Aug(213, 2, 2), T6 = Aug(132, 2, 4),
T2 = Aug(123, 2, 1), T5 = Aug(213, 2, 1), T7 = Aug(132, 2, 1)
T3 = Aug(123, 2, 2), T8 = Aug(132, 1, 1).

We would like to find bijections fi : SEn → Sn such that fi(UISn) = Av(Ti). To do that,
we first define the bijections g132 and g123 from the monotone (nondecreasing) strings in SEn to
Av(132) and Av(123).

For pattern 132: Given e = e1 . . . en ∈ SEn, let π(0) = ∅, and for each i = 1, . . . ,n, let π(i) =
π(i−1)(1, ei + 1). In other words, at the i-th step, 1 6 i 6 n, insert ei + 1 on the left. Then
π = π(n) = g132(e). In this case, e is just the reversal of the inversion code of π, i.e. ei is the
number of inversions starting from πn−i+1.

For pattern 123: Given e = e1 . . . en ∈ SEn, let π(0) = ∅, π(1) = 1, and for each i = 2, . . . ,n, let

π(i) =

{
π(i−1)(1, ei) if ei > ei−1,
π(i−1)(1, i) if ei = ei−1.

Then π = π(n) = g123(e). In other words, non-right-to-left-maxima of π are the distinct
nonzero entries of e.

Now consider all inversion sequences. For each e ∈ SEn, let head(e), the head of e, be the
longest monotone prefix of e and let h(e) = |head(e)|. In other words, we have e1 6 · · · 6
eh(e) > eh(e)+1. Clearly, when e ∈ UISn, the tail of e, i.e. suffix of e starting from eh(e)+1, is
non-increasing. Then we can define bijections f1 and f8 as follows.

For set T8 = Aug(132, 1, 1): Let π(h(e)) = g132(head(e)). Then for each i = h(e) + 1, . . . ,n, let
π(i) = π(i−1)(1, ei + 1). Then π = π(n) = f8(e). This is the simplest case of all, since e is just
the inversion code of π as for pattern 132.

For set T1 = Aug(123, 1, 1): Let π(h(e)) = g123(head(e)). Then for each i = h(e) + 1, . . . ,n, let
π(i) = π(i−1)(1, ei + 1). Then π = π(n) = f1(e). This is almost as simple, since the inversion
code yields the tail of e, which corresponds to the prefix of π ending on the rightmost “1” in
an occurrence of 123 in π.

For sets T2 and T3, we need to find the insertion position (that we will call the f-insertion point)
for each tail entry of e. To find the f-insertion point of a 123-containing permutation σ, which we
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denote insf(σ), find the entry A(σ) that is the smallest “1” in an occurrence of pattern 123 in σ,
then find the entry B(σ) that is the rightmost “2” in an occurrence of pattern 123 in σ that starts
with A(σ). Then the f-insertion point of σ is immediately to the left of B(σ).

Then we can define the bijections f2 and f3 as follows.

For set T2 = Aug(123, 2, 1): Let π(h(e)) = g123(head(e)). Then for each i = h(e) + 1, . . . ,n, let
π ′ = π(i−1)(1, ei + 1), then π(i) = π(i−1)(insf(π ′) − 1, ei + 1). In other words, tentatively
insert ei + 1 to the left of π, find the f-insertion point of the resulting permutation π ′, then
move the newly-prepended entry ei + 1 of π ′ to its f-insertion point. Then π = π(n) = f2(e).

For set T3 = Aug(123, 2, 2): Let π(h(e)) = g123(head(e)). Given a permutation σ, define the map
φσ as follows. Let b1 < b2 < · · · < bk be the distinct possible values in {B(σ(1, j)) : 1 6 j 6
n}. If σ contains 123, then bk = B(σ) and b1, . . . ,bk−1 are the left-to-right minima of σ less
than A(σ) that start a 12 pattern. If σ avoids 123, then all bj (1 6 j 6 k) are the left-to-right
minima of σ that start a 12 pattern. Also, set b0 = 0. Let

φσ(m) =

{
bj−1 + bj − 1 −m, ifm ∈ [bj−1,bj − 1] for some j 6 k,
m, ifm > bk.

Simply put, φσ maps each interval [bj−1,bj − 1] onto itself in reverse order and leaves the
rest unchanged, and thus is an involution.

Let di = φπ(i−1)(ei). Now for each i = h(e) + 1, . . . ,n, let π ′ = π(i−1)(1,di + 1), then
π(i) = π(i−1)(insf(π ′) − 1,di + 1). In other words, tentatively insert di + 1 to the left of π,
find the f-insertion point of the resulting permutation π ′, then move the newly-prepended
entry di + 1 of π ′ to its f-insertion point. Then π = π(n) = f3(e).

2 Some generalizations

Notice that each of f1, f2, f3 consists of two parts, with the first part, i.e. the mapping of the head,
being the same. Moreover, in the tail mapping part of each of f2 and f3, each step uses only the
“1” and the “2” of an occurrence of 123 to find the f-insertion point, while in the tail mapping part
of f1, the insertion point is the same at each step. In other words, in the tail mapping part of f1,
f2, and f3, no information is needed about any “3” in an occurrence of 123 used to insert the tail
entries. This leads to the following generalizations.

Two patterns, σ and τ are called shape-Wilf-equivalent (see [2]) if, for every Ferrers board λ,
they are Wilf-equivalent on λ. Here we consider Ferrers boards that are complements of the usual
Ferrers boards (i.e. are right- and top-justified). Let σ ∼ τ denote Wilf-equivalence and σ

s
∼ τ

denote shape-Wilf-equivalence of σ and τ.
The following result concerns inflations of T1, T2, and T3.

Theorem 2.1 For any patterns σ
s
∼ τ, we have

Aug(123[1, 1,σ], 1, 1) ∼ Aug(123[1, 1,σ], 2, 1) ∼ Aug(123[1, 1,σ], 2, 2)
∼Aug(123[1, 1, τ], 1, 1) ∼ Aug(123[1, 1, τ], 2, 1) ∼ Aug(123[1, 1, τ], 2, 2)

We hope to extend it to inflations of T4 and T5.
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Conjecture 2.2 The Wilf-equivalence of Theorem 2.1 also includes

Aug(213[1, 1,σ], 2, 1) ∼ Aug(213[1, 1,σ], 2, 2)
∼Aug(213[1, 1, τ], 2, 1) ∼ Aug(213[1, 1, τ], 2, 2)

For T7 and T8, it appears that we can inflate two entries and preserve Wilf-equivalence.

Conjecture 2.3 For any patterns ρ,σ,

Aug(132[1, ρ,σ], 2, 1) ∼ Aug(132[1, ρ,σ], 1, 1)

Finally, in one specific case, inflations of all Ti (i = 1, . . . , 8), appear to be Wilf-equivalent.

Conjecture 2.4 With ρ = 1 and σ = r(idm) = m(m − 1) . . . 21 in the above theorem and conjectures,
all patterns in Theorem 2.1 and Conjectures 2.2 and 2.3, as well as Aug(132[1, 1, r(idm)], 2,m + 3), are
Wilf-equivalent.

Note that the last of the patterns mentioned in Conjecture 2.4 is an inflation of T6.
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