Unimodal inversion sequences and related pattern classes

Alexander Burstein Department of Mathematics Howard University Washington, DC 20059, USA aburstein@howard.edu Walter Stromquist Department of Mathematics Bryn Mawr College Bryn Mawr, PA 19010-2899, USA wstromgu@brynmawr.edu

June 1, 2017

Mansour and Shattuck [6] have shown that exactly 9 classes of permutations (up to symmetry) avoiding triples of patterns of length 4 have the enumeration sequence A033321 [7] that is the binomial transform of Fine's sequence. Up to symmetry, these classes are $Av(T_i)$, i = 1, ..., 9, where

$T_1 = \{2134, 3124, 4123\},$	$T_2 = \{1234, 1324, 1423\},\$	$T_3 = \{2134, 1324, 1423\}$
$T_4 = \{3124, 2314, 2413\},$	$T_5 = \{3214, 2314, 2413\},$	$T_6 = \{2143, 1243, 1342\}$
$T_7 = \{1243, 1342, 1432\},$	$T_8 = \{2143, 3142, 4132\},$	$T_9 = \{2143, 2413, 3142\}.$

Four of these classes were separately shown previously to be enumerated by this sequence, while the five others are new. In chronological order of publication, see [1, Lemma 10] for T_2 , [4, Example 6.4] for T_9 , [9, Theorems 3.4 and 3.5] for T_4 , and [3, Section 3.3] for T_8 .

The same sequence also enumerates unimodal inversion sequences [8]. An *inversion sequence* (*subexcedant sequence*, a reversal of a *Lehmer code*) is a sequence $e = e_1 e_2 \dots e_n$ ($n \ge 0$) such that $e_i \in [0, i-1]$ for all i.

We generalize these findings in two different ways.

- For sets T₁, T₂, T₃, T₈, we find encodings of all permutations by inversion sequences so that the inversion sequences corresponding to the set Av(T_i) of T_i-avoiders (i = 1, 2, 3) are unimodal. This extends our PP 2016 results [5] for T₂ and T₈.
- We use the above encodings of $Av(T_i)$, i = 1, 2, 3, to generalize the Wilf-equivalence of the T_i 's to a Wilf-equivalence of families of similarly related sets of patterns of any size, obtained by inflating a certain entry of each permutation in T_i by the same block. We also conjecture similar generalizations for T_i , i = 4, 5, 6, 7, 8.

1 Bijections from inversion sequences

Let $SE_n = \prod_{i=1}^n [0, i-1]$ denote the set of all inversion sequences of length n, and let $SE = \bigcup_{n \ge 0} SE_n$. Similarly, let UIS_n be the subset of unimodal strings in SE_n , and let UIS be the subset of unimodal strings in SE. Given a permutation π , let (i, j)-*augmentation* of π , denoted $\pi(i, j)$, be

the permutation obtained by adding 1 to all letters m of π such that $m \ge j$ and inserting letter j to be in position i. Equivalently, $\pi(i, j)$ is the permutation π' such that $\pi'(i) = j$ and the pattern of π' with j deleted is π . We also let

$$\operatorname{Aug}(\pi, i, j) = \{\pi(i, k) : 1 \leq k \leq |\pi| + 1, k \neq j\}.$$

For example, 123(1,2) = 2134, 123(1,3) = 3124, 123(1,4) = 4123, so Aug $(123,1,1) = \{2134, 3124, 4123\}$. Thus,

$T_1 = Aug(123, 1, 1),$	$T_4 = Aug(213, 2, 2),$	$T_6 = Aug(132, 2, 4),$
$T_2 = Aug(123, 2, 1),$	$T_5 = Aug(213, 2, 1),$	$T_7 = Aug(132, 2, 1)$
$T_3 = Aug(123, 2, 2),$		$T_8 = Aug(132, 1, 1).$

We would like to find bijections $f_i : SE_n \to \mathfrak{S}_n$ such that $f_i(UIS_n) = Av(T_i)$. To do that, we first define the bijections g_{132} and g_{123} from the monotone (nondecreasing) strings in SE_n to Av(132) and Av(123).

For pattern 132: Given $e = e_1 \dots e_n \in SE_n$, let $\pi^{(0)} = \emptyset$, and for each $i = 1, \dots, n$, let $\pi^{(i)} = \pi^{(i-1)}(1, e_i + 1)$. In other words, at the i-th step, $1 \le i \le n$, insert $e_i + 1$ on the left. Then $\pi = \pi^{(n)} = g_{132}(e)$. In this case, *e* is just the reversal of the inversion code of π , i.e. e_i is the number of inversions starting from π_{n-i+1} .

For pattern 123: Given $e = e_1 \dots e_n \in SE_n$, let $\pi^{(0)} = \emptyset$, $\pi^{(1)} = 1$, and for each $i = 2, \dots, n$, let

$$\pi^{(i)} = \begin{cases} \pi^{(i-1)}(1, e_i) & \text{if } e_i > e_{i-1}, \\ \pi^{(i-1)}(1, i) & \text{if } e_i = e_{i-1}. \end{cases}$$

Then $\pi = \pi^{(n)} = g_{123}(e)$. In other words, non-right-to-left-maxima of π are the distinct nonzero entries of *e*.

Now consider all inversion sequences. For each $e \in SE_n$, let head(*e*), the *head* of *e*, be the longest monotone prefix of *e* and let h(e) = |head(e)|. In other words, we have $e_1 \leq \cdots \leq e_{h(e)} > e_{h(e)+1}$. Clearly, when $e \in UIS_n$, the *tail* of *e*, i.e. suffix of *e* starting from $e_{h(e)+1}$, is non-increasing. Then we can define bijections f_1 and f_8 as follows.

- For set $T_8 = \text{Aug}(132, 1, 1)$: Let $\pi^{(h(e))} = g_{132}(\text{head}(e))$. Then for each i = h(e) + 1, ..., n, let $\pi^{(i)} = \pi^{(i-1)}(1, e_i + 1)$. Then $\pi = \pi^{(n)} = f_8(e)$. This is the simplest case of all, since *e* is just the inversion code of π as for pattern 132.
- For set $T_1 = \text{Aug}(123, 1, 1)$: Let $\pi^{(h(e))} = g_{123}(\text{head}(e))$. Then for each i = h(e) + 1, ..., n, let $\pi^{(i)} = \pi^{(i-1)}(1, e_i + 1)$. Then $\pi = \pi^{(n)} = f_1(e)$. This is almost as simple, since the inversion code yields the tail of *e*, which corresponds to the prefix of π ending on the rightmost "1" in an occurrence of 123 in π .

For sets T_2 and T_3 , we need to find the insertion position (that we will call the f-*insertion point*) for each tail entry of e. To find the f-insertion point of a 123-containing permutation σ , which we

denote $ins_f(\sigma)$, find the entry $A(\sigma)$ that is the smallest "1" in an occurrence of pattern 123 in σ , then find the entry $B(\sigma)$ that is the rightmost "2" in an occurrence of pattern 123 in σ that starts with $A(\sigma)$. Then the f-insertion point of σ is immediately to the left of $B(\sigma)$.

Then we can define the bijections f_2 and f_3 as follows.

- **For set** $T_2 = Aug(123, 2, 1)$: Let $\pi^{(h(e))} = g_{123}(head(e))$. Then for each i = h(e) + 1, ..., n, let $\pi' = \pi^{(i-1)}(1, e_i + 1)$, then $\pi^{(i)} = \pi^{(i-1)}(ins_f(\pi') 1, e_i + 1)$. In other words, tentatively insert $e_i + 1$ to the left of π , find the f-insertion point of the resulting permutation π' , then move the newly-prepended entry $e_i + 1$ of π' to its f-insertion point. Then $\pi = \pi^{(n)} = f_2(e)$.
- For set $T_3 = \text{Aug}(123, 2, 2)$: Let $\pi^{(h(e))} = g_{123}(\text{head}(e))$. Given a permutation σ , define the map ϕ_{σ} as follows. Let $b_1 < b_2 < \cdots < b_k$ be the distinct possible values in $\{B(\sigma(1, j)) : 1 \leq j \leq n\}$. If σ contains 123, then $b_k = B(\sigma)$ and b_1, \ldots, b_{k-1} are the left-to-right minima of σ less than $A(\sigma)$ that start a 12 pattern. If σ avoids 123, then all b_j $(1 \leq j \leq k)$ are the left-to-right minima of σ that start a 12 pattern. Also, set $b_0 = 0$. Let

$$\varphi_{\sigma}(\mathfrak{m}) = \begin{cases} \mathfrak{b}_{j-1} + \mathfrak{b}_j - 1 - \mathfrak{m}, & \text{if } \mathfrak{m} \in [\mathfrak{b}_{j-1}, \mathfrak{b}_j - 1] \text{ for some } j \leqslant k, \\ \mathfrak{m}, & \text{if } \mathfrak{m} \geqslant \mathfrak{b}_k. \end{cases}$$

Simply put, ϕ_{σ} maps each interval $[b_{j-1}, b_j - 1]$ onto itself in reverse order and leaves the rest unchanged, and thus is an involution.

Let $d_i = \phi_{\pi^{(i-1)}}(e_i)$. Now for each i = h(e) + 1, ..., n, let $\pi' = \pi^{(i-1)}(1, d_i + 1)$, then $\pi^{(i)} = \pi^{(i-1)}(ins_f(\pi') - 1, d_i + 1)$. In other words, tentatively insert $d_i + 1$ to the left of π , find the f-insertion point of the resulting permutation π' , then move the newly-prepended entry $d_i + 1$ of π' to its f-insertion point. Then $\pi = \pi^{(n)} = f_3(e)$.

2 Some generalizations

Notice that each of f_1 , f_2 , f_3 consists of two parts, with the first part, i.e. the mapping of the head, being the same. Moreover, in the tail mapping part of each of f_2 and f_3 , each step uses only the "1" and the "2" of an occurrence of 123 to find the f-insertion point, while in the tail mapping part of f_1 , the insertion point is the same at each step. In other words, in the tail mapping part of f_1 , f_2 , and f_3 , no information is needed about any "3" in an occurrence of 123 used to insert the tail entries. This leads to the following generalizations.

Two patterns, σ and τ are called *shape-Wilf-equivalent* (see [2]) if, for every Ferrers board λ , they are Wilf-equivalent on λ . Here we consider Ferrers boards that are complements of the usual Ferrers boards (i.e. are right- and top-justified). Let $\sigma \sim \tau$ denote Wilf-equivalence and $\sigma \stackrel{s}{\sim} \tau$ denote shape-Wilf-equivalence of σ and τ .

The following result concerns inflations of T_1 , T_2 , and T_3 .

Theorem 2.1 For any patterns $\sigma \stackrel{s}{\sim} \tau$, we have

Aug
$$(123[1,1,\sigma],1,1) \sim$$
 Aug $(123[1,1,\sigma],2,1) \sim$ Aug $(123[1,1,\sigma],2,2)$
~ Aug $(123[1,1,\tau],1,1) \sim$ Aug $(123[1,1,\tau],2,1) \sim$ Aug $(123[1,1,\tau],2,2)$

We hope to extend it to inflations of T_4 and T_5 .

Conjecture 2.2 *The Wilf-equivalence of Theorem 2.1 also includes*

Aug $(213[1,1,\sigma],2,1) \sim$ Aug $(213[1,1,\sigma],2,2)$ ~ Aug $(213[1,1,\tau],2,1) \sim$ Aug $(213[1,1,\tau],2,2)$

For T_7 and T_8 , it appears that we can inflate two entries and preserve Wilf-equivalence.

Conjecture 2.3 For any patterns ρ , σ ,

Aug $(132[1, \rho, \sigma], 2, 1) \sim Aug(132[1, \rho, \sigma], 1, 1)$

Finally, in one specific case, inflations of all T_i (i = 1, ..., 8), appear to be Wilf-equivalent.

Conjecture 2.4 With $\rho = 1$ and $\sigma = r(id_m) = m(m-1) \dots 21$ in the above theorem and conjectures, all patterns in Theorem 2.1 and Conjectures 2.2 and 2.3, as well as Aug(132[1, 1, r(id_m)], 2, m + 3), are Wilf-equivalent.

Note that the last of the patterns mentioned in Conjecture 2.4 is an inflation of T_6 .

References

- M.H. Albert, R.E.L. Aldred, M.D. Atkinson, C.C. Handley, D.A. Holton, D.J. McCaughan, H. van Ditmarsch, Sorting Classes, *Electron. J. Combin.* 12 (2005), R31.
- [2] J. Backelin, J. West, G. Xin, Wilf-equivalence for singleton classes, Adv. Appl. Math. 38 (2007), 133-148.
- [3] J. Bloom, A. Burstein, Egge triples and unbalanced Wilf-equivalence, *Australas. J. Combin.* **64(1)** (2016), 232-251.
- [4] R. Brignall, S. Huczynska, V. Vatter, Simple permutations and algebraic generating functions, J. Combin. Th., Ser. A 115(3) (2008), 423-441.
- [5] A. Burstein, W. Stromquist, Unimodal inversion sequences and pattern classes, poster, Permutation Patterns 2016, Howard University, June 27 – July 1, 2016, Washington, DC, USA.
- [6] T. Mansour, M. Shattuck, Nine classes of permutations enumerated by binomial transform of Fine's sequence, J. Discrete Appl. Math., in press, https://doi.org/10.1016/j.dam.2017.04.015.
- [7] OEIS Foundation Inc. (2017), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A033321.
- [8] C.D. Savage, Inversion sequences, plenary talk, Permutation Patterns 2014, East Tennessee State University, July 7-11, 2014, Johnson City, TN, USA.
- [9] R. Smith, V. Vatter, A stack and a pop stack in series, Australas. J. Combin. 58(1) (2014), 157-171.