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The aim of this work is to study the asymptotic behavior of a permutation of large size, picked
uniformly at random in a substitution-closed permutation class given by its (finite or infinite) set
of simple permutations.

Thanks to their encoding by families of trees, it can be proved that substitution-closed permu-
tation classes (possibly, satisfying additional constraints) share a common behavior. For example,
the canonical tree representation of their elements imply that all substitution-closed classes with
finitely many simple permutations have an algebraic generating functions. Our work illustrates
this universality paradigm in probability theory: we prove that the biased Brownian separable
permuton is the limiting permuton of many substitution-closed classes (see Theorem 7).

Figure 1. Three simulations of the biased Brownian separable permuton µ(p)

(left: p = 0.2; middle: p = 0.45; right: p = 0.5.). By analogy with permutation
diagrams, black dots represent the support of the measure µ(p).

Context of the work. One in many ways permutation classes can be studied is by looking at
the features of a typical large permutation σ in the class. A particularly interesting feature is the
frequency of occurrence of a pattern π, especially when it is considered for all π simultaneously.
Denote by occ(π, σ) the number of occurrences of a pattern π ∈ Sk in σ ∈ Sn and by õcc(π, σ)
the pattern density of π in σ. More formally

occ(π, σ) = card{I ⊂ [n] of cardinality k such that patI(σ) = π}

õcc(π, σ) =
occ(π, σ)(

n
k

) = P (patI(σ) = π) ,(1)

where I is randomly and uniformly chosen among the
(
n
k

)
subsets of [n] with k elements. The

study of the asymptotics of õcc(π,σn), where σn is a uniform random permutation of size n in a
permutation class C and π ∈ S is a fixed pattern, has been carried out for various classes C (see
[6, 7, 12, 8, 20, 15, 14]).

A parallel line of work to gain understanding on typical large permutations in C consists in
studying the asymptotic shape of the diagram of σn as n → ∞, possibly after rescaling this
diagram so that it fits into a unit square (see [16, 3, 17, 19, 10, 11, 5]).

These two points of view may seem different, but they are in fact tightly bound together.
Indeed, it follows from results of [13] that the convergence of pattern densities characterizes the
convergence of the diagrams, seen as permutons. This important property was actually the main
motivation for the introduction of permutons in [13].
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The permuton viewpoint. A permuton is a probability measure on the unit square [0, 1]2 with
both its marginals uniform. Permutons generalize permutation diagrams in the following sense:
to every permutation σ ∈ Sn, we associate the permuton µσ obtained by replacing every point
(i, σ(i)) in the diagram of σ (normalized to the unit square) by a square of the form [(i−1)/n, i/n]×
[(σ(i)− 1)/n, σ(i)/n], which has mass 1/n uniformly distributed.

The weak convergence of measures provides a good notion of convergence for permutons, as
discussed in [13]. This allows to define convergent sequences of permutations: we say that (σn)
converges to µ when (µσn)→ µ weakly.

By definition, convergence to a permuton encodes the first-order asymptotics of the shape of a
sequence of permutations. We can prove that it also encodes the first-order asymptotics of pattern
densities:

Theorem 1. A sequence (σn)n of random permutations converges in distribution to a random
permuton if and only if the sequences of random pattern densities (õcc(π,σn))n converge in dis-
tribution, jointly for all π ∈ S.

Moreover, for any pattern π, the limit distribution of the density of π can be expressed as a
function of the limit permuton.

Our previous article [4] studies the limit of the class C = Av(2413, 3142) of separable permuta-
tions, in terms of pattern densities and permutons.

Theorem 2. [4] Let σn be a uniform random separable permutation of size n. There exists a
nondeterministic permuton µ, called the Brownian separable permuton, such that (µσn

) converges
in distribution to µ.

The result of [4] is more precise, and describes the asymptotic joint distribution of the random
variables õcc(π,σn) as a measurable functional of a signed Brownian excursion. This object is a
normalized Brownian excursion whose strict local minima are decorated with an i.i.d. sequence
of balanced signs in {+,−}. The Brownian separable permuton can be directly build from this
signed Brownian excursion.

The class of separable permutations is the smallest nontrivial substitution-closed class, as de-
fined in the next section. An important question raised in [4] is: is the Brownian separable
permuton universal (in the sense that it describes the limit of a large family of substitution-closed
classes)? This works gives a fairly precise (and positive) answer to this question: we will see that
in many cases the limit belongs to a one-parameter family of deformations of the Brownian sepa-
rable permuton: the biased Brownian separable permuton µ(p) of parameter p ∈ (0, 1) is obtained
from a biased signed Brownian excursion (defined similarly to the signed Brownian excursion but
with each sign having probability p of being a +). Simulations of the biased Brownian separable
permuton are given in Fig. 1.

Substitution-closed classes. The substitution θ[π(1), . . . , π(d)] of some permutations π(1), . . . , π(d)

in a permutation θ is the permutation obtained by inflating each point θi of θ by a square contain-
ing the diagram of π(i) (see Fig. 2). We sometimes refer to θ as the skeleton of the substitution.

Figure 2. Example of substitution: 132[21, 132, 1] = 214653.

By definition of permutation classes, if θ[π(1), . . . , π(d)] ∈ C for some permutation class C, then
θ, π(1), . . . , π(d) ∈ C. The converse is not always true.
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Definition 3. A permutation class C is substitution-closed if, for every θ, π(1), . . . , π(d) in C,
θ[π(1), . . . , π(d)] ∈ C.

The focus of this work is substitution-closed classes. To study such classes it is essential to
observe that any permutation has a canonical decomposition using substitutions, which can be
encoded in a tree. This decomposition is canonical in the same sense as the decomposition of
integers into products of primes. In this analogy, simple permutations play the role of prime
numbers and the substitution plays the role of the product.

Theorem 4. [1] Every permutation σ of size n ≥ 2 can be uniquely decomposed as either:

• α[π(1), . . . , π(d)], where α is simple of size d ≥ 4,
• ⊕[π(1), . . . , π(d)], where d ≥ 2 and π(1), . . . , π(d) are ⊕-indecomposable,
• 	[π(1), . . . , π(d)], where d ≥ 2 and π(1), . . . , π(d) are 	-indecomposable.

This decomposition theorem can be applied recursively inside the permutations π(i) appearing
in the items above, until we reach permutations of size 1. Doing so, a permutation σ can be
naturally encoded by a rooted planar tree, whose internal nodes are labeled by the skeletons of
the substitutions that are considered along the recursive decomposition process, and whose leaves
correspond to the elements of σ. This construction provides a one-to-one correspondence between
permutations and canonical trees (defined below) that maps the size to the number of leaves.

Definition 5. A canonical tree is a rooted planar tree whose internal nodes carry labels satisfying
the following constraints.

• Internal nodes are labeled by ⊕,	, or by a simple permutation.
• A node labeled by α has degree |α|, nodes labeled by ⊕ and 	 have degree at least 2.
• A child of a node labeled by ⊕ (resp. 	) cannot be labeled by ⊕ (resp. 	).

Let S be a (finite or infinite) set of simple permutations. We denote by 〈S〉n the set of permuta-
tions of size n whose canonical trees use only nodes ⊕, 	 and α ∈ S, and we define 〈S〉 = ∪n〈S〉n.
We say that S is downward-closed if for any σ ∈ S and any simple pattern π 4 σ, it holds that
π ∈ C

Proposition 6. Every substitution-closed permutation class C containing 12 and 21 can be written
as C = 〈S〉 for a downward-closed set S of simple permutations, which is just the set of simple
permutations in C.

Conversely, for any downward-closed set S of simple permutations, 〈S〉 is a substitution-closed
permutation class.

When a set S of simple permutations is not downward-closed then 〈S〉 is not a permutation class,
however the results that we state in this work are also true for this kind of sets of permutations.

Main result: Universality. Let S be a (finite or infinite) set of simple permutations. We are
interested in the asymptotic behavior of a uniform permutation σn in 〈S〉n which we describe in
terms of permutons. Let

S(z) =
∑
α∈S

z|α|

be the generating function of S and let RS ∈ [0,+∞] be the radius of convergence of S.

Theorem 7 (Main Theorem: the standard case). Let S be a set of simple permutations such that

(H1) RS > 0 and lim
r→RS
r<RS

S′(r) >
2

(1 +RS)2
− 1.

For every n ≥ 1, let σn be a uniform permutation in 〈S〉n, and let µσn be the random permuton
associated to σn. The sequence (µσn

)n tends in distribution in the weak convergence topology
to the biased Brownian separable permuton whose parameter p only depends on the quantity of
occurrences of the patterns 12 and 21 in the elements of S.
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We call standard the case when Condition (H1) is satisfied because there are natural and easy
sufficient conditions to ensure this case. Moreover, this case includes all sets S studied so far in
the literature on permutation classes, to our knowledge. Indeed:

• If S is a generating function with radius of convergence RS >
√

2 − 1, (H1) is satisfied.
In particular, this covers the cases where there are finitely many simple permutations in
the class (then S is a polynomial and RS =∞), and more generally where the number of
simple permutations of size n grows subexponentially (in this case, if there are infinitely
many simple permutations, necessarily RS = 1).

• If S′ is divergent at RS , (H1) is trivially verified. In particular, this happens when S is a
rational generating function, or when S has a square root singularity at RS .

In addition to verifying Condition (H1), we have computed the numerical value of the parameter
p for some of sets S of simple permutations studied in the literature. All the values that we have
found are between 0.45 and 0.55, which makes simulations indistinguishable in practice from the
unbiased Brownian permuton (see Fig. 1).

Since all the cases studied in the literature (to our knowledge) are covered by the standard case,
we may wonder if there exist substitution-closed classes that are not covered by this case. Or are
those observations just an artifact, maybe due to the set of simple permutations of a substitution-
closed class being easier to compute when Condition (H1) is satisfied? We leave those questions
open.

However, when leaving the case of permutation classes, one can easily find sets S that do
not satisfy Condition (H1), and even do that not fit into the universality class of the Brownian
permuton. This is discussed in the next section.

Other results: Beyond universality. When RS > 0, for the two remaining cases S′(RS) <
2/(1 + RS)2 − 1 and S′(RS) = 2/(1 + RS)2 − 1, the asymptotic behavior of µσn

is qualitatively
different.

Figure 3. Simulations of a 1.1-stable and 1.5-stable permuton.

• Case S′(RS) < 2/(1 +RS)2 − 1. This is a degenerate case.
We can show that, with a small additional assumption which we call (CS), the random
permuton (µσn) converges. If uniform simple permutations in S ∩ Sn have a limit (in
the sense of permutons), we show that the limit of permutations in 〈S〉 is the same. This
explains the terminology “degenerate”: all permutations in the class (or set) 〈S〉 are close
to the simple ones, and the “composite” structure of permutations does not appear in the
limit.
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• Case S′(RS) = 2/(1 +RS)2 − 1. This critical case is more subtle.
We again need to assume the above mentioned hypothesis (CS). According to the be-
havior of S near RS , the limiting permuton of µσn can be either the (biased) Brownian
separable permuton, or belongs to a new family of stable permutons. These stable per-
mutons are defined using the marginals of the random stable tree (see [9]), which explains
the terminology. Two simulations are presented in Fig. 3.

All cases where we describe the asymptotic behavior of µσn are such that RS > 0. Observe that
it is always the case for proper permutation classes (i.e., permutation classes different from S).
Indeed, from the Marcus-Tardos Theorem [18], the number of permutations of size n in a proper
class is at most cn, for some constant c. For the class S, we however do have RS = 0, since there
are asymptotically e−2n!(1 +O(1/n)) simple permutations of size n [2, Theorem 5]. In this case,
the permuton µσn

associated to a uniform permutation σn in S converges in distribution to the
uniform measure on [0, 1]2. The situation where RS = 0 may happen as well for sets 〈S〉 where S
is not downward-closed, but we leave these cases open.
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