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ÉMILE NADEAU AND STÉPHANIE SCHANCK

Abstract. We present a general solution to Elmsley’s problem for the “horse-

shoe” permutations. These permutations were first introduced by Butler, Di-

aconis and Graham in “The mathematics of the flip and horseshoe shuffles”
(2016), who presented a solution for horseshoe permutations of size 2r [1]. Our

results extend their results: for horseshoe permutations of any size, we identify

the elements that admit a unique Elmsley sequence, and we prove there are
exactly two Elmsley sequences otherwise. Moreover, we describe algorithms to

compute these sequences.

Elmsley’s problem and minimal factorisations in permutation groups

We begin with an everyday description of Elmsley’s problem in terms of card
shuffling. Suppose we have a deck of cards and that we are only permitted to perform
certain kinds of shuffles that we call allowable shuffles. Given any card in the deck,
we want to find a minimal sequence of allowable shuffles that moves the card to the
top of the deck. Elmsley’s problem consists of describing all such sequences.

By representing a shuffle of a deck of n cards as a permutation acting on the
set {1, 2, . . . , n}, we can reformulate Elmsley’s problem as a minimal factorisation
problem for permutation groups. More precisely, let X be a collection of permuta-
tions belonging to the symmetric group Sn, and let 〈X〉 denote the subgroup of Sn

generated by X. Each w ∈ 〈X〉 can be factored into a product of elements in X, and
we let `X(w) denote the minimal number of factors among all such factorisations.

Definition 1. Let X ⊆ Sn. For each c ∈ {1, 2, . . . , n}, consider the elements of 〈X〉
that send c to 1 and that are of minimal length (with respect to `X):

Ec = {w ∈ 〈X〉 : w(c) = 1 and `X(w) ≤ `X(u) for all u ∈ 〈X〉 with u(c) = 1} .

Elmsley’s problem consists of describing the minimal factorisations of these elements
(if Ec is nonempty). We call these minimal factorization Elmsley sequences.

Elmsley’s problem has been solved for various types of shuffles. It was solved
for faro shuffles (also called perfect shuffles) by Diaconis and Graham [2]. More
recently, Butler, Diaconis and Graham presented a solution to Elmsley’s problem
for a class of shuffles called horseshoe shuffles for decks of cards of size 2r [1].

Here, we extend their results by presenting a solution to Elmsley’s problem
for horseshoe shuffles for decks of any size. In addition to describing all minimal
factorizations, we provide algorithms to quickly compute the factorizations.

This work is the result of an undergraduate summer research program funded by NSERC
USRAs in 2015 and 2016. We thank Franco Saliola, our research supervisor, for his support.
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Elmsley’s problem for horseshoe shuffles of a deck of size 2r.

Horseshoe shuffles are defined on decks with an even number of cards. To perform
a horseshoe shuffle, split the deck in half, reverse the order of the cards in the second
half, and interlace perfectly the two halves. There are actually two variants of this
shuffle depending on the resulting position of the top card: if the top card stays
on top, then we have an out horseshoe shuffle; otherwise, we have an in horseshoe
shuffle. See Figure 1. For simplicity, we will refer to these shuffles as out and in,
respectively.
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Figure 1. out and in horseshoe shuffles with 10 cards (adapted from [1]).

In [1], Butler, Diaconis and Graham proved the existence of an Elmsley sequence
for each card of the deck of size 2n. For each card in a deck of size 2r, they also
proved that this sequence is unique and they gave an algorithm to find it. They
asked for a solution for the general case of a deck of size 2n.

Due to limited space, we will not give a description of the algorithm here, but
we remark that the Elmsley sequence of a card is determined directly from the
binary expansion of its position in the deck. For example, to compute the Elmsley
sequence of the card in position 7 a deck of size 16, apply the sequence in, in.

Elmsley’s problem for horseshoe shuffles of a deck of size 2n.

We present here an overview of the solution to Elmsley’s problem for the in and
out horseshoe shuffles and a deck of size 2n. The details can be found in [3, 4].

For a deck of 2n cards, we will use the factorization 2n = 2rm with r maxi-
mal. The problem then breaks up into three parts that will be study separately:
“boundary” cards; “middle” cards; and the other cards.

Boundary cards. Given a deck of size 2rm cards with m > 1 odd. The order
1 boundary is the separation of the deck into two halves that we call subdecks (of
order 1). The order i boundaries for 2 6 i 6 r are the separations of the order i− 1
subdecks into two equals parts. Figure 2 shows an example of boundaries.

A card is a boundary card if it is directly above or below a boundary, or if it is the
top or bottom card of the deck. We can prove that out sends an order i boundary
card to an order i− 1 boundary card; and that in sends an order i boundary card
to an order i − 1 boundary card (for i > 0). Also, after a shuffle, we know that
all cards at order i − 1 boundaries were all above or all under order i boundaries
before the shuffle. To prove this, we use an explicit formula describing the effect of
the horseshoe shuffles on the boundary cards. We then get the following result.

Theorem 2. Every boundary card has a unique Elmsley sequence. If the boundary
card is of order i, then its Elmsley sequence is of length i + 1.
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Figure 2. Boundaries in a 24 card deck. The boundary cards are
those adjacent to the boundaries.

The Elmsley sequence of a boundary card is obtained by applying the Butler,
Diaconis and Graham’s algorithm in [1] to the deck consisting only of the boundary
cards (i.e., the deck obtained by removing the non-boundary cards). More specif-
ically, one uses the binary representation of the position of a card in the smaller
deck to determine the (unique) sequence of ins and outs necessary to move the card
to the top of the deck.

For example, the card in position 9 in a deck of size 24 is in position 7 relative
to the subdeck of 16 boundary cards. The previous example then tell us that the
sequence is in, in.

Middle cards. A middle card is a card in the center of one of the smallest subdecks
defined by the boundaries. See Figure 3 for two examples.
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Figure 3. In green, middle cards (labelled G) in decks of size 10
and 12 cards.

We prove that both the in and out horseshoe shuffles move middle cards to the
boundary cards with highest possible order, and that all such boundary cards are
obtained in this way. In particular, this implies that the Elmsley sequences of all
non-boundary cards are not unique.

Theorem 3. If a card c in a deck of size 2n has a unique Elmsley sequence, then
either 2n = 2r or 2n = 2rm with m > 1 odd and the card c is a boundary card.

Other cards. We define two types of classes for each card in the deck as follows.

Definition 4. Let x be the position of a card in a deck of 2rm cards with m odd.

• The type A class of the card is the set of cards with a position congruent
to x mod m. It is denoted Ax.
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• The type B class of the card is the set of cards with position in{
2sm + p, (2s + 1)m + (m− 1− p)

∣∣∣ s ∈ {0, 1, . . . , 2k−1 − 1}
}
,

where p (0 6 p 6 m− 1) is such that the set contains x. It is denoted Bx.

Remark that the type B classes partition the deck. Specifically, a type B class is
composed the cards in the odd subdecks that are congruent to p together with the
cards in the even subdecks that are congruent to m − 1 − p. In a given subdeck,
the latter is symmetric about the middle card with the card congruent to p (see
figure 4); more precisely, Bp ⊆ Ap ∪ Am−p−1.

Note that the type B classes Bp and Bm−1−p contain cards that are of the same
congruence class modulo m. We call two such classes complementary. Each Bp is
complementary with exactly one class, namely Bm−1−p. Therefore, each type B
class has a unique distinct complementary class except for the class of middle cards
(Am−1

2
= Bm−1

2
), which is self-complementary.
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Figure 4. The cards in B1 are in magenta and labelled M; the
cards in B5 are in green and labelled G. Note that B1 and B5

are complementary and symmetric about the middle card of the
subdecks. The class B3 = A3 consists of the middle cards, which
are in yellow and labelled Y.

By studying the effect of the horseshoe shuffles on type A and type B classes,
we prove the following result.

Proposition 5. Let U be the union of a type B class with its complementary class.
Then the set of cards that can be sent to U by a horseshoe shuffle is a union of the
form ∪i∈I(Bi ∪ Bm−1−i), with I ⊆ {1, 2, . . . ,m− 1}. Moreover, |V | = 2|U |.

This leads to a proof that there is a unique sequence of minimal length that brings
a non-boundary card to a middle card. To achieve this, we begin by constructing
the tree T with root (1, 1, 1) and with branching rule illustrated in Figure 5.

(i, j, k)

(i, j, k + 1) (2k+1 − i, 2k − j, k + 1) (i, 2k + j, k + 1) (2k+1 − i, 2k+1 − j, k + 1)

1 2 3 4

Figure 5. Rule for construction of T

Although this tree is independent of m, the trees obtained by applying the func-
tion pm(i, j, k) = im−j

2k to its vertices allows us to prove that non-boundary cards in
positions tm+ p and tm+ p+ 1 cannot have Elmsley sequences of the same length;
and to construct all the Elmsley sequences for each card in the deck. We then have
all the tools required to prove the last theorem.
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Theorem 6. For each non-boundary card, the shortest sequence of in and out
horseshoe shuffles that move it to a middle card position is unique. Consequently,
all non-boundary cards have exactly two Elmsley sequences.
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