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When considering binary strings, it’s natural to wonder how many distinct subsequences
might exist in a given string. For a fixed string, there’s an existent algorithm which provides a
straightforward way to compute the number of distinct subsequences. The natural extension
to this question, then, is to consider random strings. To frame our discussion, we first need
to establish some notation. Using the definitions established in [?], a binary string of length
n is some A = a1a2 . . . an ∈ {0, 1}n and another string B of length m ≤ n is a subsequence
of A if there exist indices i1 < i2 < ... < im such that

B = ai1ai2 ...aim

We use the notation B � A when B is a subsequence of A.
Let Tn be a binary string of length n, ti be the ith letter of Tn, Ti be the string formed by

truncating Tn after the ith letter, and φ(Tn) be the number of distinct subsequences in Tn. If
we let Sn be a random binary string of length n, it was shown in [?] that when Pr[si = 1] = .5
(that is, when each letter in Sn is equally likely to be a 0 or a 1), then E[φ(Sn)] ∼ k(3

2
)n for

a constant k. Collins [?] later improved this result by determining that E[φ(Sn)] = 2(3
2
)n−1

under these conditions.
We generalize Collin’s result, finding a formula for the expected value of φ(Sn) when

Pr[si = 1] = α ∈ (0, 1). Because the cases when Pr[si = 1] is 0 or 1 are trivial, this gives us
E[φ(Sn)] when Pr[si = 1] = α ∈ [0, 1]. We use a very different method than Collins [?]. We
define a new property of a string - the number of new distinct subsequences - and then use
these numbers as the entries in a binary tree. Our formula is then given as a weighted sum
of the entries in this tree.

Let B be a binary tree whose entries are binary strings and let Bn,m be the mth entry in
the nth row of B. The root of B is the empty string, each left child is its parent with a 1
appended, and each right child is its parent with a 0 appended. If we call the first row “row
0”, then row n of this tree contains all length n binary strings. Rows 0-3 of this tree are
shown below:
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Clearly, there’s a one-to-one correspondence between binary strings and entries in this
tree. In order to make use of this tree, we form the binary tree B′ with B′n,m denoting the mth

entry in the nth row of B′. Letting ν(Tn) denote the number of new distinct subsequences in
a string (i.e., the number of distinct subsequences that do not exist in the truncation Tn−1),
we can define each B′n,m as ν(Bn,m), the number of new distinct subsequences introduced in
the entry Bn,m. Finally, for each child B′n,m we assign the edge between it and its parent
B′n−1,dm

2
e a weight equal to Pr[Sn = Bn,m|Sn−1 = Bn−1,dm

2
e]. Thus we give each edge going

to a left child the weight α and each edge going to a right child the weight 1− α. Rows 0-3
of B′ are shown below:
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Use of such trees provides proof for the following theorem:

Theorem 0.1. Suppose Pr[si = 1] = α ∈ [0, 1] for all 1 ≤ i ≤ n. Then we have

φ(Sn) =

n if α = 0, 1(
1−2
√
α(1−α)

)(
1−
(
1−
√
α(1−α)

)n)
+
(
1+2
√
α(1−α)

)((
1+
√
α(1−α)

)n
−1
)

2
√
α(1−α)

if α 6= 0, 1

This has the natural asymptotic corrollary,

Corollary 0.2. Suppose Pr[si = 1] = α ∈ (0, 1) for all 1 < i < n. Then there exists a
constant k such that

φ(Sn) ∼ k
(
1 +

√
α(1− α)

)n
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Having exhausted the possible cases for a binary string, we then proceed to look at strings
on the extended alphabet {1, 2, ..., d} = [d] where each letter is j with probability αj for all
j ∈ [d]. For such strings, we have the following way to compute the expected value of φ(Sn):

Theorem 0.3. Let Sn be a random length-n string on the alphabet [d] where Pr[si = j] = αj
for all i, j. Then,

E[φ(Sn)] =
[
1 1 1 . . . 1

]


n−1∑
i=0


1 α1 α1 . . . α1

α2 1 α2 . . . α2

α3 α3 1 . . . a3
. . .

αd αd αd . . . 1


i


α1

α2

α3
...
αd

 .
Returning to binary strings, we then consider strings where the probability of seeing a

particular letter will depend on the letter before (we assume that strings are generated from
left to right). In the random string Sn, Pr[si = 1|si−1 = 1] = α and Pr[si = 1|si−1 = 0] =
β]. Of course, we will need some other rule for Pr[s1 = 1]; one logical choice is to take
Pr[s1 = 1] = γ where γ is the steady-state probability of a 1 occurring, which in this case
gives γ = β

1+β−α . Using the same techniques as for the extended alphabet strings, we obtain
the recurrences

an+1 = α(an + cn);

bn+1 = (1− α)(an + cn) + αbn +
β(1− α)

1− β
dn;

cn+1 = β(bn + dn) + (1− β)cn +
(1− α)β

α
an;

dn+1 = (1− β)(bn + dn).

which give rise to the matrix equations
an
bn
cn
dn

 =


α 0 α 0

1− α α 1− α β(1−α)
1−β

(1−α)β
α

β 1− β β
0 1− β 0 1− β


n−1 

a1
b1
c1
d1

 ,
and

E[φ(Sn)] =
[
1 1 1 . . . 1

]


n−1∑
i=0


α 0 α 0

1− α α 1− α β(1−α)
1−β

(1−α)β
α

β 1− β β
0 1− β 0 1− β


i−1


a1
b1
c1
d1

 .
We have also obtained similar recurrences in the case of letters generated by a two-state

Markov chain. It remains to be seen if extraction of eigenvalues can aid in the identification
of the growth rate in any of these cases, but in the case of independent non-uniform letter
generation, we have shown using subadditivity arguments that the limiting expected value
is asymptotic to Cn for some C > 1.
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