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1 Introduction

Given a sequence w = w1 . . . wn of distinct integers, let red[w] be the permutation found by replacing
the i-th largest integer that appears in σ by i. For example, if σ = 2754, then red[σ] = 1432.
Given a permutation τ = τ1 . . . τj in the symmetric group Sj , we say that the pattern τ occurs in
σ = σ1 . . . σn ∈ Sn provided there exists 1 ≤ i1 < · · · < ij ≤ n such that red[σi1 . . . σij ] = τ . We
say that a permutation σ avoids the pattern τ if τ does not occur in σ. Let Sn(τ) denote the set
of permutations in Sn which avoid τ .

The main goal of this paper is to study the distribution of quadrant marked mesh patterns in
123-avoiding permutations. The notion of mesh patterns was introduced by Brändén and Claesson
[1] to provide explicit expansions for certain permutation statistics as, possibly infinite, linear
combinations of (classical) permutation patterns. Kitaev and Remmel initiated the systematic
study of distribution of quadrant marked mesh patterns on permutations in [3]. This study was
extended to 132-avoiding permutations by Kitaev, Remmel and Tiefenbruck in [4, 5, 6].

Let σ = σ1 . . . σn be a permutation written in one-line notation. Then we will consider the graph of
σ, G(σ), to be the set of points (i, σi) for i = 1, . . . , n. For example, the graph of the permutation
σ = 471569283 is pictured in Figure 1. Then if we draw a coordinate system centered at a point
(i, σi), we will be interested in the points that lie in the four quadrants I, II, III, and IV of that
coordinate system as pictured in Figure 1. For any a, b, c, d ∈ N where N = {0, 1, 2, . . .} is the
set of natural numbers and any σ = σ1 . . . σn ∈ Sn, we say that σi matches the quadrant marked
mesh pattern MMP(a, b, c, d) in σ if, in G(σ) relative to the coordinate system which has the point
(i, σi) as its origin, there are at least a points in quadrant I, at least b points in quadrant II, at
least c points in quadrant III, and at least d points in quadrant IV. For example, if σ = 471569283,
the point σ4 = 5 matches the marked mesh pattern MMP(2, 1, 2, 1) since, in G(σ) relative to the
coordinate system with the origin at (4, 5), there are 3 points in quadrant I, 1 point in quadrant II,
2 points in quadrant III, and 2 points in quadrant IV. Note that if a coordinate in MMP(a, b, c, d)
is 0, then there is no condition imposed on the points in the corresponding quadrant.

In addition, we shall consider the patterns MMP(a, b, c, d) where a, b, c, d ∈ N ∪ {∅}. Here when
a coordinate of MMP(a, b, c, d) is the empty set, then for σi to match MMP(a, b, c, d) in σ =
σ1 . . . σn ∈ Sn, it must be the case that there are no points in G(σ) relative to the coordinate
system with the origin at (i, σi) in the corresponding quadrant. For example, if σ = 471569283,
the point σ3 = 1 matches the marked mesh pattern MMP(4, 2, ∅, ∅) since, in G(σ) relative to the
coordinate system with the origin at (3, 1), there are 6 points in quadrant I, 2 points in quadrant
II, no points in quadrants III and IV. We let mmp(a,b,c,d)(σ) denote the number of i such that σi
matches MMP(a, b, c, d) in σ.

For any permutation τ , we let

Q(a,b,c,d)
τ (t, x) = 1 +

∑
n≥1

tnQ(a,b,c,d)
n,τ (x)
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Figure 1: The graph of σ = 471569283.

where for any a, b, c, d ∈ {∅}∪N, Q(a,b,c,d)
n,τ (x) =

∑
σ∈Sn(τ)

xmmp(a,b,c,d)(σ). For any a, b, c, d, we will write

Q
(a,b,c,d)
n,τ (x)|xk for the coefficient of xk in Q

(a,b,c,d)
n,τ (x). Given a permutation σ = σ1σ2 . . . σn ∈ Sn,

we let the reverse of σ, σr, be defined by σr = σn . . . σ2σ1, and the complement of σ, σc, be
defined by σc = (n + 1 − σ1)(n + 1 − σ2) . . . (n + 1 − σn). It is easy to see that the family

of generating functions Q
(a,b,c,d)
τr (t, x), Q

(a,b,c,d)
τc (t, x), and Q

(a,b,c,d)
(τr)c (t, x) can be obtained from the

family of generating functions Q
(a,b,c,d)
τ (t, x).

2 Results on generating functions Q
(a,b,c,d)
123 (t, x) and their coeffi-

cients

In this section, we shall list a sample of results about the generating functions Q
(a,b,c,d)
123 (t, x) and

the coefficients Q
(a,b,c,d)
123 (t, x)

∣∣
tnxk

.

It is easy to see that Sn(123) is closed under the operation reverse-complement. Thus we have the
following lemma.

Lemma 1. For any a, b, c, d ∈ {∅} ∪ N, Q(a,b,c,d)
n,123 (x) = Q

(c,d,a,b)
n,123 (x).

Next it is obvious that if there is a σi in σ = σ1 . . . σn ∈ Sn such that σi matches MMP(a, b, c, d)
where a, c ≥ 1, then σ contains an occurrence of 123. Thus there are no permutations σ ∈ Sn(123)
that can match a quadrant marked mesh pattern MMP(a, b, c, d) where a, c ≥ 1. Thus if a ≥ 1,

then Q
(a,b,0,d)
123 (t, x) = Q

(a,b,∅,d)
123 (t, x).

Given an n×n square, we will label the coordinates of the columns from left to right with 0, 1, . . . , n
and the coordinates of the rows from top to bottom with 0, 1 . . . , n. A Dyck path is a path made
up of unit down-steps D and unit right-steps R which starts at (0, 0) and ends at (n, n) which stays
on or below the diagonal x = y. Many of our results are proved using a bijection of Krattenthaler
[7] Φ : Sn(132)→ Dn and a bijection of Elizalde and Deutsch [2] Ψ : Sn(123)→ Dn.

Given any permutation σ = σ1 . . . σn ∈ Sn(132), we write it on an n× n table by placing σi in the
ith column and σthi row, reading from bottom to top. Then, we shade the cells to the north-east of
the cell that contains σi. Then the path Φ(σ) is the path that goes along the south-west boundary
of the shaded cells. For example, this process is pictured on the left in Figure 2 in this case where
σ = 867943251 ∈ S9(132). Given σ = σ1 . . . σn, we say that σj a left-to-right mininum of σ if
σi > σj for all i < j. It is easy to see that the left-to-right minima of σ correspond to peaks of
the path Φ(σ), i.e., they occupy cells along the inside boundary of the Φ(σ) that correspond to a
down step D immediately followed by a right-step R. For this reason, we shall often refer to the
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left-to-right minimum as peaks of the σ and the remaining elements in σ as non-peaks.

The map Φ−1 is easy to describe. That is, given a Dyck path P , we first mark every cell corre-
sponding to a peak of the path with a ×. Then we look at the rows and columns which do not
have a cross. Starting form the left-most column, that does not contain a cross, we put a cross in
the lowest possible row without a cross that lies above the path.

The map Ψ : Sn(123) → Dn is defined by the exact same process. For example, Ψ(869743251) is
pictured on the right in Figure 2. The map Φ−1 is also easy to describe. That is, given a Dyck
path P , we first mark every cell corresponding to a peak of the path with a ×. Then we look at
the rows and columns which do not have a cross. Starting form the left-most column, that does
not contain a cross, we put a cross in the highest possible row without a cross that lies above the
path. The map Ψ−1 ◦ Φ give a bijection between Sn(132) and Sn(123) which is pictured in Figure
2. This bijection allows us to prove the following theorem.

Theorem 1. For any k > 0 and `,m ≥ 0, Q
(k,`,0,m)
123 (t, x) = Q

(k,`,∅,m)
123 (t, x) = Q

(k,`,∅,m)
132 (t, x).

8

6

7

9

4

3

2

5

1

=⇒

8

6

9

7

4

3

2

5

1

Figure 2: Sn(132) to Sn(123) keeps MMP(k, `, ∅,m)

Thus to compute the generating functions Qk,`,0,m123 (x, t) where k > 0, we need only compute the

generating functions Qk,`,∅,m132 (x, t) which can easily be computed using the techniques Kiteav, Rem-

mel, and Tiefenbruck in [4, 5, 6]. In fact, the only generating functions of the form Qk,`,∅,m132 (x, t)

computed in [4, 5, 6] are Qk,0,∅,0132 (x, t) where k ≥ 0. We can find the generating function Qk,`,∅,m132 (x, t)
for any k, `,m ≥ 0. We list a couple of examples of our results below.
Theorem 2.

Q
(0,0,∅,0)
132 (t, x) =

1 + t− tx−
√

(1 + t− tx)2 − 4t

2t
.

For k > 0,

Q
(0,k,∅,0)
132 (t, x) =

1 + t
∑k−1

i=1 Ci−1t
i−1(Q

(0,k−i,∅,0)
132 (t, x)−Q(0,0,∅,0)

132 (t, x))

1− tQ(0,0,∅,0)
132 (t, x))

.

Theorem 3. For all k, ` > 0,

Q
(k,`,∅,0)
132 (t, x) = 1 + t

`−1∑
i=1

Ci−1t
i−1Q

(k,`−i,∅,0)
132 (t, x) + (Q

(k−1,`,∅,0)
132 (t, x)−

`−2∑
i=0

Cit
i)Q

(k,0,∅,0)
132 (t, x).

Theorem 1 implies that the coefficients of xk in polynomials of the form Q
(a,b,0,d)
n,123 (x) and Q

(0,d,a,b)
n,123 (x)

can be found from the coefficients of xk in polynomials of the form Q
(a,b,∅,d)
n,132 (x). We have the fol-

lowing theorem about the coefficients of x0 and x1 in functions Q
(a,b,∅,d)
n,132 (x).
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Theorem 4. Q
(k,`,∅,m)
n,132 (x)

∣∣
x0

= Q
(k,`,0,m)
n,132 (x)

∣∣
x0

and Q
(k,`,∅,m)
n,132 (x)

∣∣
x1

= Q
(k,`,0,m)
n,132 (x)

∣∣
x1
.

The reason that this theorem is interesting is that in [4, 5, 6] many explicit formulas were developed

for the coefficients Q
(k,`,0,m)
n,132 (x)

∣∣
x0

and Q
(k,`,0,m)
n,132 (x)

∣∣
x1

.

We also prove the following theorems which give formula about the highest power of x in all

generating functions Q
(a,b,c,d)
n,132 (x).

Theorem 5. If n ≥ k + `+ 1, then

Q
(0,k,0,`)
n,123 (x)

∣∣
xn−k−` = Q

(0,k,0,`)
n,132 (x)

∣∣
xn−k−` = CkCn−k−`C`,

Q
(∅,k,∅,`)
n,123 (x)

∣∣
xn−k−` = Q

(∅,k,∅,`)
n,132 (x)

∣∣
xn−k−` = CkC`,

Q
(0,k,∅,`)
n,123 (x)

∣∣
xn−k−` = Q

(0,k,∅,`)
n,132 (x)

∣∣
xn−k−` = CkC`, and

Q
(k,`,∅,0)
n,123 (x)

∣∣
xn−k−` = Q

(k,`,∅,0)
n,132 (x)

∣∣
xn−k−` =

k + 1

k + `+ 1

(
k + 2`

`

)
.

Theorem 6. For n ≥ k + `+m+ 1 and k > 0,

Q
(k,`,∅,m)
n,123 (x)

∣∣
xn−k−`−m = Q

(k,`,∅,m)
n,132 (x)

∣∣
xn−k−`−m =

(k + 1)2

(k + `+ 1)(k +m+ 1)

(
k + 2`

`

)(
k + 2m

m

)
.

By Lemma 1, Q
(a,b,0,d)
123 (t, x) = Q

(0,d,a,b)
123 (t, x) so that the only generating functions Q

(a,b,c,d)
123 (t, x)

which we can not compute via Theorem 1 are generating functions of the form Q
(0,b,0,d)
123 (t, x). To

compute generating functions of the form Q
(0,b,0,d)
123 (t, x), we must use other methods.

We start by considering generating functions of the form Q
(0,k,0,0)
123 (t, x). In this case, it will be

useful to separately track peaks and non-peaks. Thus if σ = σ1 . . . σn ∈ Sn(123), then we will
say that σi matches the pattern MMP(0,

(
k1
k2

)
, 0, 0) if σi is peak of σ and it matches the pattern

MMP(0, k1, 0, 0) or σi is a non-peak of σ and it matches the pattern MMP(0, k2, 0, 0). Then we
define

Q
(0,(k1k2),0,0)
123 (t, x0, x1) =

∞∑
n=0

tnQ
(0,(k1k2),0,0)
n,123 (x0, x1)

where Q
(0,(k1k2),0,0)
n,123 (x0, x1) =

∑
σ∈Sn(123) x

# MMP(0,k1,0,0)-mch of peaks
0 x

# MMP(0,k2,0,0)-mch of non-peaks
1 .

We can show that Q
(0,(k1k2),0,0)
n,123 (x0, x1) the polynomials satisfy simple recursions which lead to re-

cursive formulas to compute Q
(0,(k1k2),0,0)
123 (t, x0, x1). For example, we prove that

Theorem 7. For all k1, k2 > 0, we have

Q
(0,(k10 ),0,0)
123 (t, x0, x1) =

1

1− tx1Q
(0,(00),0,0)
123 (t, x0, x1)

(
1 + tQ

(0,(k1−1
0 ),0,0)

123 (t, x0, x1)

+tx1

k1−1∑
i=2

ti−1Q
(0,(00),0,0)
i−1,123 (1, x1)Q

(0,(k1−i
0 ),0,0)

123 (t, x0, x1)

−tx1Q
(0,(00),0,0)
123 (t, x0, x1)

k1−2∑
i=0

tiQ
(0,(00),0,0)
i−1,123 (1, x1)

)
.
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For generating functions Q
(0,k,0,`)
123 (x, t), we divide the graph of a permutation into several regions

and have the following theorem to enumerate the coefficients Q
(0,k,0,`)
n,123 (x)

∣∣
xs

.
Theorem 8. For any 123-avoiding permutation σ = σ1 . . . σn, σj matches MMP(0, k, 0, `) in σ if
and only if, in the graph G(σ) of σ, (j, σj) does not lie in the top k rows or the bottom ` rows and
it does not lie in the left-most k columns or the right-most ` columns. Thus

mmp(0,k,0,`)(σ) =

∣∣∣∣{j|k < j ≤ n− ` and k < σj ≤ n− `}
∣∣∣∣.

Using Theorem 8, we can calculate Q
(0,k,0,`)
123 (t, x) for k, l not too big. For example,

Theorem 9. For n ≥ 4, Q
(0,1,0,1)
123 (t, x)

∣∣
tnxk

= 0 unless k ∈ {n− 4, n− 3, n− 2} and

Q
(0,1,0,1)
123 (t, x)

∣∣
tnxn−4 = Cn − 2Cn−1 + Cn−2 − 2,

Q
(0,1,0,1)
123 (t, x)

∣∣
tnxn−3 = 2Cn−1 − 2Cn−2 + 2, and

Q
(0,1,0,1)
123 (t, x)

∣∣
tnxn−2 = Cn−2

where Cn denote the nth Catalan number.
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