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Generalizing from an interesting Laplace transform identity, Katsuura [2] proves, via induction,
that for k, n ∈ Z with 0 ≤ k ≤ n,

n∑
j=0

(−1)j
(
n

j

)
(jx + y)k =

{
(−x)nn!, k = n, and
0, 0 ≤ k < n

(0.1)

for any x, y ∈ C. At first glance it seems odd that the righthand side of this equation never
contains y; however Equation (0.1) is a special case of the more general polynomial identity
given in Equation (0.2). This equation involves Stirling numbers of the second kind, denoted by{

n
k

}
, and we see that powers of y only occur if k > n:

n∑
j=0

(−1)j
(
n

j

)
(jx + y)k = (−1)nn!

k∑
i=0

(
k

i

){
i
n

}
xiyk−i. (0.2)

Equation (0.2) may be proved combinatorially via involutions on colored words, but it turns
out, unsurprisingly, that the formula itself is not totally new. Indeed, it is a consequence of
Euler’s Finite Difference Theorem [3, pg. 68].

Theorem 1 (Euler’s Finite Difference Theorem). Let f(x) = a0 + a1x + a2x
2 + · · · + akx

k be
a complex polynomial and let n be a nonnegative integer. Then

n∑
j=0

(−1)j
(
n

j

)
f(j) =

{
(−1)nann!, k = n, and
0, 0 ≤ k < n.

Our goal is to generalize Theorem 1 and then use that generalization for our own combinatorial

purposes. To that end, we start with the following well-known formula involving
{

n
k

}
:

n∑
j=0

(−1)j
(
n

j

)
jk = (−1)nn!

{
k
n

}
.

Letting g(x) = a0 + a1x + a2x
2 + · · · , we multiply both sides of the preceding equation by ak

and sum over all k ≥ 0 to obtain our desired generalization of Theorem 1:

n∑
j=0

(−1)j
(
n

j

)
g(j) = (−1)nn!

∑
k≥0

ak

{
k
n

}
. (0.3)

By substituting in for g(j), Equation (0.3) yields a vast assortment of combinatorial identities.
For instance, letting g(j) = (jx+y)k yields Equation (0.2), which proves our motivating example,
whereas letting g(j) = 1 yields the well-known alternating binomial sum identity

n∑
j=0

(−1)j
(
n

j

)
= 0.
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Another well-known identity that follows immediately from the proper choice of g(j) is the

orthogonality relation between
{

n
k

}
and the signed Stirling numbers of the first kind, denoted

by
[

n
k

]
:

∑
k≥0

[
m
k

]{
k
n

}
=

{
1, k = n, and
0, 0 ≤ m < n.

For another application, we go back a few decades to Broder’s r-Stirling numbers of the second

kind [1], denoted by
{

n
k

}
r

and defined as the number of set partitions of {1, 2, . . . , n} into k

nonempty, unordered parts such that 1, 2, . . . , r are in distinct parts. Rewriting Equation (32)
from [1], we get that

{
k + r
n+ r

}
r

=

k∑
i=n

(
k

i

){
i
n

}
rk−i, (0.4)

and letting g(j) = (j+r)k in Equation (0.3), we obtain, via Equation (0.4), the following result.

Theorem 2. Let k, n, r be nonnegative integers with r ≥ 1. Then

(−1)nn!
{

k + r
n+ r

}
r

=

n∑
j=0

(−1)j
(
n

j

)
(j + r)k.

Theorem 2 then gives a new way to find the exponential generating function of
{

k + r
n+ r

}
r
:

∑
k≥0

{
k + r
n+ r

}
r

zk

k!
=

ezr

n!
(ez − 1)n.
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