SPLIT PATTERN AVOIDANCE (AFTER TIMOTHY ALLAND AND EDWARD RICHMOND)

ALEXANDER WOO

This talk is based on work of Timothy Alland and Edward Richmond (arXiv:1610.03535). Starting from a question in algebraic combinatorics inspired by a question in algebraic geometry, they define the notion of **split pattern avoidance** and **complete split pattern avoidance**. They then show the following:

Theorem 1. A permutation w completely split avoids 3|12 and 23|1 if and only if w avoids 3412, 52341, and 635241.

The main definitions are as follows:

Definition 2. A permutation $w \in S_n$ split contains the split pattern $u(1) \cdots u(j) | u(j+1) \cdots u(k)$ with respect to position r if and only if there exist $i_1 < \cdots < i_k$ such that w contains u at positions $i_1 < \cdots < i_k$ and $i_j \le r < i_{j+1}$. We say w split avoids the split pattern with respect to r otherwise.

This means the pattern is divided into two halves, and the halves must embed into the permutation on opposite sides of position r. Clearly, w avoids u if and only if it split avoids $u(1) \cdots u(j) | u(j+1) \cdots u(k)$ with respect to all positions r.

Definition 3. A permutation $w \in S_n$ completely split avoids a set of split patterns $S = \{u_1(1) \cdots u_1(j_1) | u_1(j_1+1) \cdots u_1(k_1), \dots, u_m(1) \cdots u_m(j_m) | u_m(j_m+1) \cdots u_m(k_m)\}$ if either w = 1, or if there exists a position r (with $1 \le r \le n-1$) such that w split avoids all the split patterns in S AND $w(1) \cdots w(r)$ and $w(r+1) \cdots w(n)$ both completely split avoid S.

We have the following lemma:

Lemma 4. A permutation w completely split avoids a set S if and only if w avoids every permutation $v \in S_m$ such that v contains one of the split patterns in S with respect to every position r (with $1 \le r \le m-1$).

A case-by-case argument then shows the following:

Proposition 5. If v split contains either 3|12 or 23|1 with respect to every position r, then v contains 3412, 52341, or 635241.

Date: May 29, 2017.